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ABSTRACT 

 

The  design  of  new  engineering  materials  resistant  to  both  wear  damage  and  

corrosion degradation becomes increasingly demanding in complex service conditions. 

Unfortunately, there  is  typically  a  tradeoff  between  wear  and  corrosion  resistance,  even  

for important passive metals such as Al alloys. This is because the presence of precipitates 

hardens the material but at the same time lead to unfavorable galvanic coupling between the 

precipitates and the matrix, resulting in accelerated corrosion. This work showed that Al (or Mg) 

supersaturated solid solution formed using non-equilibrium methods exhibited enhanced 

corrosion resistance without compromising strength. For Al, alloying with Mn up to ~ 20.at.% 

simultaneously  increased  the  wear  resistance of  Al  as  well  as  the protectiveness of the 

passive layer, thus improving the overall tribocorrosion resistance. For Mg, alloying with Y 

(4.67 wt.%), Zr (0.45 wt%), and Nd (1.79 wt%) in solid solution led to ~ 8 fold increment in 

corrosion resistance in physiological environment.  

Magnetron-sputtered aluminum (Al) and aluminum–manganese (Al-Mn) films with 

structures ranging from nanocrystalline to amorphous were obtained by tuning the Mn% up to 

20.5 at.%. Corrosion behavior of the films was investigated in 0.6 M and 0.01 M NaCl aqueous 

solutions by potentiodynamic polarization (PD) and electrochemical impedance spectroscopy 

(EIS). Pitting corrosion was found to be strongly affected by alloy composition. The amorphous 

Al–20.5 at.% Mn exhibited the best pitting resistance during short term exposure. However, over 

longer immersion in 0.01 M NaCl up to 108 hrs, nanocrystalline Al–5.2 at.% Mn showed the 
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highest corrosion resistance. The dual-phase Al-11.5 at % Mn alloy was found to have higher 

nominal corrosion rate compared to its nanocrystalline or amorphous counterparts. 

The effects of Mn alloying on the tribocorrosion behavior of magnetron-sputtered Al-Mn 

thin films with 5.2 at.% and 20.5 at.% Mn were investigated in 0.6 M NaCl aqueous solution. 

Tribocorrosion resistance of Al-Mn was found to be strongly affected by the alloying 

composition and applied potential. Higher Mn content increased H/E ratio and promoted the 

formation of denser and more compact passive film, hence improving tribocorrosion resistance 

of Al. In particular, alloying with 20.5 at.% Mn led to an increase of the corrosion resistance by 

~ 10 times and the hardness ~ 8 times compared to pure Al. The total material loss during 

tribocorrosion was found to increase with applied potential. When the applied potential was 

increased from cathodic to anodic, simultaneous contribution of the mechanical and the 

electrochemical wear leads to accelerated material loss. A galvanic cell model was used to 

investigate the depassivation-repassivation kinetics during tribocorrosion. It was found that 

alloying with 5.2 at.% Mn led to more than 10-fold reduction in the current density required to 

re-passivate similar worn areas compared to pure Al. The origin of wear-corrosion synergy was 

discussed based on these observations.  

Magnesium alloys such as WE43 are considered for biomedical applications including 

cardiovascular stents and bone implants due to their biocompatibility, good cell adhesion, and 

mechanical properties close to that of bones. Unfortunately, their high degradation rate and 

subsequent loss of structural integrity in physiological environments hinders such applications. 

To improve the corrosion resistance of WE43 magnesium alloy, its microstructure was optimized 

to prevent micro-galvanic coupling between Mg matrix and precipitates. Chemically 

homogeneous WE43 with nanoscale surface roughness was obtained by magnetron sputtering 
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with high effective quench rate. The effect of chemical heterogeneity on the corrosion resistance 

of biodegradable WE43 magnesium alloy was studied by performing corrosion tests in blood 

bank buffered saline using samples from two metallurgical states, cast and deposited. The 

microstructure of all samples was investigated by grazing incidence X-ray diffraction (XRD), 

scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The 

deposited samples, prepared by magnetron sputtering using targets with the same global 

composition as cast WE43, exhibited chemically homogeneous microstructure without the 

formation of secondary phases typically observed in the cast alloy. The corrosion behavior was 

studied by PD and EIS tests. It was found that the deposited alloy showed enhanced corrosion 

resistance, ~8-fold reduction in corrosion rate compared to the cast alloy, owing to the 

elimination of micro-galvanic coupling between the Mg matrix and the precipitates. In-situ 

monitoring of hydrogen bubble evolution during corrosion indicated significantly reduced 

cathodic reaction kinetics in the deposited alloy. Post-corrosion surface and cross-sectional SEM 

studies showed that the high corrosion rate in the cast alloy was associated with the formation of 

severely cracked corrosion products preferably around Zr- and Y-containing precipitates.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Problem Statement and Research Significance  

The design of light weight metals resistant to both corrosion degradation and wear 

damage for complex service conditions is increasingly demanding. Unfortunately, there is 

typically a tradeoff between corrosion and wear resistance. For example, aluminum (Al) is a 

well-known passive metal with good corrosion resistance due to the spontaneous formation of a 

protective oxide film on the surface, but highly susceptible to wear due to its low hardness. 

Moreover, during tribocorrosion (i.e. material degradation due to the combined effect of wear 

and corrosion) the mechanical wear will locally destroy the protective oxide film leading to rapid 

localized corrosion and early component failure. Most commercial Al alloys are precipitation 

hardened to enhance their mechanical properties, but the formation of secondary phases and 

precipitates also lead to a reduction in corrosion resistance due to galvanic coupling between the 

precipitates and Al matrix. Similar wear-corrosion resistance tradeoff dilemma is also observed 

in magnesium (Mg) alloys. For example, WE series Mg alloys (W represents Yttrium and E 

represents rare earth elements) are good candidates for biomedical application such as 

cardiovascular stents and bone anchors and screws, due to their biocompatibility, ability to 

degrade in vivo, and mechanical properties close to that of the human bones. However, the 

Mg41Nd5 and Mg24Y5 precipitates in WE Mg forms micro galvanic couples with the α-Mg 

matrix, leading to fast corrosion and loss of structural integrity of the implant before the patient 

is completely cured.  This research aims at answering the question “how to redesign Al and Mg 
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alloys to improve their corrosion resistance without sacrificing strength?” The developed 

understanding from this study will thus serve as important design guidelines for producing novel 

metals and coatings with enhanced corrosion and wear resistance for use under complex service 

conditions.    

1.2 Research Objective 

To combat the wear-corrosion resistance tradeoff dilemma, it was hypothesized that 

eliminating precipitates in conventional alloys by forming a supersaturated solid solution, the 

alloying additions would strengthen the material without causing unfavorable galvanic coupling 

between precipitates and metal matrix, hence enhancing the wear and corrosion resistance 

simultaneously. The main objective of this dissertation is to test this hypothesis and investigate 

the role of alloy concentration and microstructure on the corrosion and tribocorrosion resistance 

of supersaturated solid solutions of Al and Mg alloys, which represent passive and active 

dissolution behaviors, respectively. Firstly, the effect of alloying additions on the corrosion and 

tribocorrosion resistance of binary Al-Mn was investigated. Secondly, the effect of chemical 

homogeneity on the corrosion resistance of a WE43 Mg alloy was studied in simulated 

physiological environment. Both alloys studied (Al-Mn and WE43) were produced using non-

equilibrium processes (e.g. physical vapor deposition, or electrodeposition). The high effective 

quench rate of these processes enables the formation of supersaturated alloys with chemically 

homogeneity, ultrafine microstructure and smooth surface morphology. The main objective was 

successfully addressed by accomplishing the following aims.  

1- Design and fabricate Al-Mn supersaturated solid solution. (Ch. 3) 

2- Study how alloy concentration affects the microstructure. (Ch. 3) 
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3- Study how alloy microstructure affects corrosion, wear and their synergy of Al-Mn. 

(Ch. 3 and 4) 

4- Investigate the role of different tribological and electrochemical variables on the 

tribocorrosion resistance of Al-Mn. (Ch. 4) 

5- Synthetize a chemically homogenous i.e. precipitate-free WE43 Mg alloy. (Ch. 5) 

6- Evaluate the role of chemical heterogeneity on the corrosion mechanisms of WE43 

Mg alloys. (Ch. 5)      

1.3 Dissertation Summary 

To gain better understanding on the effects of alloy concentration and microstructure 

evolution on the corrosion and tribocorrosion resistance of Al and Mg alloys, supersaturated 

solid solutions of Al-Mn and WE-43 Mg alloys were fabricated by magnetron sputtering and 

tested for their corrosion and tribocorrosion resistance. The chapters of this dissertation are 

organized as follows: 

Chapters 1 and 2 represent the essential framework of the dissertation. The problem 

statement and significance of the research are presented in chapter 1. The fundamental aspects of 

light weight metals (with more attention to Al and Mg alloys), corrosion and tribocorrosion 

mechanisms are discussed in chapter 2.    

Chapter 3 discusses the effect of alloy concentration on the microstructure and corrosion 

resistance of supersaturated Al-Mn alloy. Al-Mn thin films were fabricated by magnetron 

sputtering. The microstructure evolution as a function of alloy concentration was investigated by 

grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The 

corrosion behavior was investigated in 0.6 M and 0.01 M NaCl aqueous solution. The 
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microstructure was tailored by changing alloy concentration. The pitting potential was found to 

be strongly affected by alloy composition. The crystalline alloy (Al-5at.%Mn) exhibited the best 

corrosion resistance over prolonged immersion tests, while the amorphous alloy (Al-20at.%Mn) 

showed the highest pitting potential during short term immersion. 

Chapter 4 utilized the alloy concentration-structure-corrosion resistance relationship 

developed in chapter 3 to investigate the tribocorrosion response of the crystalline (Al-5at.%Mn) 

and amorphous (Al-20at.%Mn) Al-Mn alloys. The tribocorrosion tests were conducted in a 

reciprocating ball-on-plate mode using alumina ball as the counter piece in 0.6 M NaCl aqueous 

solution. The compact and dense passive film of the amorphous alloys together with the high 

H/E ratio improved the tribocorrosion resistance of Al. The repassivation current density 

required to repassivate the worn areas decreased by increasing Mn concentration. 

Chapter 5 investigates the effect of chemical heterogeneity on the corrosion resistance of 

WE43 Mg alloy. Cast and magnetron sputtered samples were tested in blood bank buffered 

saline solution. The precipitate-free magnetron sputtered alloy with homogeneous microstructure 

showed a ~8-fold reduction in corrosion rate due to the elimination of the micro-galvanic 

coupling between the Mg matrix and the more electrochemically noble precipitates. In-situ video 

monitoring and post-corrosion microstructure characterization provides further understanding of 

the associated degradation mechanism.            
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CHAPTER 2: BACKGROUND 

 

2.1 Light Weight Metals 

The high strength-to-weight ratio (specific strength) of light metals and alloys promotes 

their use in structural, automotive and aerospace industries. Al (65 % lighter than steel) and Mg 

(33% and 75% lighter than Al and steel, respectively) alloys are promising replacement for 

conventional steel and cast iron in automobile manufacturing, driven by the strict regulations for 

enhancing fuel efficiency and reducing greenhouse gas emission [1]. In 2015, Ford released the 

all-aluminum-body F-150 truck with about 15% reduction in body weight. Al stands out 

compared to other metals for its recyclability, where ~ 75% of Al ever produced is still in use 

today. In 2015, 56.8 billion Al beverage can (Al-Mn-Mg alloy) have been recycled, accounting 

for an industry recycling rate of 64.3% [2]. The light weight of Al together with the high strength 

of some of its alloys, excellent corrosion resistance, excellent electrical and thermal conductivity, 

permits its use in automobile, aerospace and aircrafts industries, electrically heated appliances 

and utensils, decorative and functional uses, food and beverage packaging [3]. In addition, Al is 

also frequently applied as a corrosion protection coating for steel [4, 5], magnesium alloys [6, 7], 

and NdFeB magnets [8] etc., replacing the toxic cadmium coatings [9]. Common Al wrought 

alloys with their major alloying elements, properties and applications are listed in table 2.1 [10]. 

The U.S annual consumption and cost of Al for the past 5 years together with the consumption 

share of the major markets are shown in Fig 2.1 [11].  
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Mg is ductile, castable and has good damping properties. It is typically used in 

automobile, aircraft, aerospace, ballistics, electronics and armor applications  [12, 13]. Common 

Mg wrought alloys with their major alloying elements, properties and applications are listed in 

table 2.2 [10]. The U.S annual consumption and cost of Mg for the past 5 years together with the 

consumption share of the major markets are shown in Fig 2.2 [11]. The use of Mg alloys in the 

automobile industries started in the 1920’s in auto-racing vehicles, while the VW Beetle was the 

first commercial car to include Mg alloys [14]. Physiologically, Mg is the fourth common 

mineral available in human bodies, and Mg
2+ 

is the second common intracellular cation [15]. 

Due to its biocompatibility, Mg and some of its alloys are considered promising materials for 

biodegradable applications such as cardiovascular stents [16, 17], tissue scaffolds, and bone 

screws [18-20]. For example, after several animal trials [21-23], WE43 absorbable 

cardiovascular stents were used clinically for the first time in 2003-2004 [24].          

2.2 Fundamental Mechanisms of Metal Corrosion  

2.2.1 Corrosion Reactions  

Metallic corrosion is the process of the deterioration of a metal or of its properties  due to 

(mostly electrochemical) reaction with the environment [25]. Consequences are important: in 

2002, the direct cost of metallic corrosion in the United States was estimated as 3.1% of the U.S. 

Gross Domestic Product (GDP) [26]. In 2013 the global cost of corrosion was estimated to be 

3.4% of global GDP [27]. For corrosion to occur, the following components must be present: a 

conductive solution (electrolyte), electronic path, anodic reaction, and cathodic reaction. The 

electrochemical deterioration of a metal (M) could be represented by the following anodic 

(oxidation) reaction; 
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 M → M
n+ 

+ ne
-
.   (2.1) 

To sustain the anodic reaction a matching, electron consuming, cathodic reaction is 

needed. A generalized cathodic reaction is shown in Eq. 2.2 and depending on the electrolyte it 

could take one of the common forms in Eq. 2.3-2.6 [28]: 

 

 aOX + ne
- 
→ b Red (2.2) 

 O2 + 2H2O + 4e
-
 → 4OH

- 
(oxygen reduction in neutral and basic media), (2.3) 

 O2 + 4H
+ 

+ 4e
-
 → 2H2O (oxygen reduction in acidic media), (2.4) 

 2H
+
 + 2e

-
 → H2

 
(hydrogen reduction), (2.5) 

 2H2O + 2e
-
 → H2 + 2OH

- 
(water reduction). (2.6) 

Fig. 2.3 shows a schematic representation of the electrochemical reactions of Mg (left) 

and Al (right) in either a neutral or basic solution. The rate of the anodic (oxidation) reaction in 

equation 2.1 is equal to the rate of cathodic (reduction) reaction in equations 2.2-2.5. Here the 

metal (Al or Mg) is oxidized to metal ion while electrons are released and consumed by the 

reduction reaction. The number of electrons equals the valence of the metal ions (2 and 3 for Mg 

and AL, respectively) released to the electrolyte [28]. When a metal is placed in a solution and 

establishes a dynamic equilibrium with its own ion by simultaneous occurrence of the reaction in 

Eq. 2.1 and its reverse cathodic reaction, the electrical potential difference between the metal and 

the solution is given by Nernst equation [25, 28, 29]: 

 (𝐸)𝑀𝑛+/𝑀 =(𝐸𝑂)𝑀𝑛+/𝑀 - 
𝑅𝑇

𝑛𝐹
ln[𝑀]𝑛+. (2.7) 

The equilibrium potential for the reduction reaction in Eq. 2.2 and the simultaneous 

occurrence of its reverse anodic reaction is: 

 (𝐸)𝑜𝑥/𝑅𝑒𝑑 =(𝐸𝑂)𝑜𝑥/𝑅𝑒𝑑 - (
𝑅𝑇

𝑛𝐹
)𝑙𝑛

[𝑂𝑥]𝑎

[𝑅𝑒𝑑]𝑏⁄ . (2.8) 
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The activity of the metal, oxidized and reduced species are represented by [M], [Ox], and 

[Red], respectively. E
O 

is the standard potential of each designated redox system. When the 

standard potentials of different metals are listed in ascending or descending order, taking the 

standard potential of the hydrogen ion system as the zero point, the electrochemical series of 

metals is formed (Table 2.3) [29]. A metal has the tendency to corrode (when placed in an 

environment where another redox system is present) if its equilibrium potential is more negative 

compared to the equilibrium potential of the other system. Both potentials have then a tendency 

to deviate from their equilibrium and support a coupled reaction at an intermediate mixed 

potential. The regimes of stability for the corrosion reactions can be illustrated using Pourbaix 

diagrams where the electrochemical potential is plotted vs. the pH of water  [29]. From these 

diagrams it is possible to identify the electrochemical state of a metal (immunity, actively 

corroding, or passivity) at a specific pH and potential. The Pourbaix diagrams of Al [10] and Mg 

[30] are shown in Fig. 2.4 and 2.5, respectively. The dashed lines (a) and (b) in the diagrams 

represent the potentials below which hydrogen ion reduction and oxygen reduction reactions 

respectively become possible under standard conditions.  

2.2.2 Classification of Electrochemical Corrosion 

Generally corrosion is classified into two main categories: uniform and localized [29], 

based on the amount of metal loss before components failure. Total metal loss during uniform 

corrosion can be much higher than that of the localized corrosion [25], but the latter can be 

highly concentrated and have very adverse results. Uniform corrosion occurs when the entire 

surface of an exposed metal or alloy corrodes, while localized corrosion is the case when specific 

parts of the exposed surface corrode. Uniform corrosion is often manifested as atmospheric, 

galvanic, high temperature, liquid-metal, molten salt, biological, and stray-current corrosion. On 
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the other hand, localized corrosion includes selective dissolution, stress corrosion cracking, 

impingement attack, pitting, crevice, fretting, and intergranular corrosion [25].  

2.2.3 Polarization Behavior of Electrochemical Systems 

In the absence of any externally applied current, the rate of the anodic (oxidation) 

reaction in equation 2.1 is equal to the rate of the cathodic (reduction) reaction in equations 2.2-

2.5. The electronic flow associated with the anodic and cathodic reactions can be quantified in 

terms of respective electric currents Ianodic and Icathodic , with the former assigned by convention a 

positive sign while the latter is assigned a negative sign. When the two reactions are coupled as 

indicated above, a current Icorr = Ianodic=|Icathodic| represents the rate of both reactions and 

corresponds to  the corrosion rate according to Faraday’s law by: 

 𝐼
𝑐𝑜𝑟𝑟=

nFW

MT

 ,  (2.9) 

where n is the valence of the metal, F is Faraday’s constant (96,500 C.mol
-1

), W is the atomic 

mass of the metal, M is the mass of corroded metal (g), and T is the length of time for which the 

current, if constant, was flowing (s). The potential difference between the corroding metal and a 

reference electrode is known as the open circuit potential (Eoc) or corrosion potential (Ecorr). 

When an external current is applied to a corroding metal, the potential will deviate from the Eoc 

to another potential E, and the deviation is expressed as the overpotential η=E-Eoc. Fig. 2.6 

shows a schematic representation of a polarization diagram. The current is expressed per unit 

area of the electrode in log scale (log i). In the diagram, the conditions for  the unpolarized metal, 

Eo,c and Eo,a are the Eoc of the reduced and oxidized species, respectively. io,c and io,a are the 

exchange current densities of the reduced and oxidized species, respectively. The intersection of 

the anodic and cathodic reactions represents the Eoc/Ecorr and icorr. Similarly, Eoc/Ecorr and icorr are 

estimated as the intersection of the extrapolation of the linear parts (Tafel line) of the diagram 
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(condition of polarized metal). Under steady state and simple activation polarization conditions 

where the effect of mass transport is neglected, the total net current density (i=ia-ic) could be 

expressed by the  Butler-Volmer equation [29, 31]:       

 𝑖 = 𝑖𝑐𝑜𝑟𝑟[
𝛼𝑛𝐹𝜂

𝑅𝑇
−

(1−𝛼)𝑛𝐹𝜂

𝑅𝑇
], (2.10) 

where η is the overpotential, α is the half reaction transfer coefficient, βa and βc can be calculated 

from Tafel slopes as, βa = 2.3RT/αnF and βc = -2.3RT/(1-α)nF [25].  

2.2.4 Electrochemical Measuring Methods 

In this dissertation, the corrosion resistance of Al and Mg alloys is mainly evaluated 

using potentiodynamic (PD) and electrochemical impedance spectroscopy (EIS) tests. The 

working principles of these two methods are discussed next.  

2.2.4.1 PD Tests 

With the aid of commercially available instruments such as galvanostat/potentiostat, the 

polarization diagram (red line) shown in Fig. 2.6 is generated by observing the response of the 

current under either static or dynamic control of potential. The potential is varied by either a 

sweep or a step mode over a selected range and rate. Similarly, in galvanostatic experiments, the 

current is controlled and the potential response is measured. Linear polarization methods are 

used to compute the corrosion rate of a metal. The corrosion current density (icorr) can be 

obtained from the polarization resistance (RP) and Tafel slopes as: 

 icorr =
B

RP
, (2.11) 

where RP is defined as the ratio of change in potential to the current. Experimentally, Rp is 

determined from the slope of the short nearly linear segment of the polarization curve when 

plotted as a function of current density in a linear scale. As shown in [25] B is calculated by: 
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 𝐵 =
𝛽𝑎.𝛽𝑐

2.3(𝛽𝑎+𝛽𝑐)
. (2.12) 

For passive metals such as Al, Ti, and stainless steel, the anodic curve of the polarization 

diagram (Fig. 2.6) will exhibit a characteristic behavior as schematically shown in Fig. 2.7. By 

increasing the potential above the passivation potential (EP), the current density rapidly decreases 

(thus indicating a decreased anodic reaction rate) from a critical value (ic) to a value 

corresponding to the passive current density (iP). In the region between the passive and 

transpassive potentials, the metal is covered with a highly protective oxide or hydroxide film 

[25].      

2.2.4.2 EIS Tests 

EIS is a useful technique to better quantify electrochemical parameters of a system. Due 

to the small amplitude ac signal used compared to other electrochemical methods, EIS is 

considered a nondestructive electrochemical test, from which various system parameters such as 

RP and the value of interfacial capacitance corrosion rate, reaction kinetics, mass transport, 

dielectric properties, and detection of localized corrosion can be obtained [32]. Other advantages 

of this technique include, capability of probing relaxation phenomena over wide range of 

frequencies, its steady sate nature, and availability of time dependent data [33]. The major 

challenge in  EIS is the complexity of  data analysis, usually by means of  equivalent circuits 

used to fit experimental data [33].  When a small-amplitude sinusoidal potential (±10 mV) is 

applied to a metal-electrolyte interface at various frequencies, the resulting alternating current 

(AC) may be out of phase compared to the applied potential as shown in Fig. 2.8. EIS analysis is 

represented as Nyquist (Fig. 2.9.a) or Bode plots (Fig. 2.9.b). For the simple case illustrated 

there, the impedance at the low frequency limit equals (RS + RP) and at the high frequency limit 

equals RS, where RS is the solution resistance. The electrode-solution interface may often be 
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modeled as an equivalent circuit shown as a simple form in the inset of Fig. 2.9.a, where C is the 

double layer capacitance for ideal system behavior and is replaced by constant phase element 

(CPE) for non-ideal behavior [34]. The components of the CPE are discussed in more detail in 

section 3.3.  

2.2.5 Corrosion Mechanism of Al and Al Alloys 

The corrosion behavior of Al is best viewed using Pourbaix diagram shown in Fig. 2.4. 

Al is stable in metallic state at potentials below -1.8 V vs. SHE. Above this potential and in the 

pH range of -2 to 4.5, Al will oxidize to Al
3+ 

in acidic environment.  In the pH range between 4.5 

and 10, the oxide film is thermodynamically stable. At pH greater than 10.5, Al will corrode 

under alkaline condition to aluminate (AlO2
−) [35]. Moon and Pyun [36] found that the corrosion 

rate of pure Al in (mg.cm
-2

.min
-1

) increased dramatically from 0.002 at acidic pH to 0.05 at 

alkaline pH. Depending on the forming conditions, the oxide film grown on Al has different 

physical and chemical properties [37]. The oxide was found to be amorphous for air-bourne 

oxides. Films grown in a borate or tartaric acids are thin, dense and amorphous. In sulfuric and 

phosphoric acids, the films are thick, porous and crystalline. The corrosion of Al and Al alloys is 

governed by the protectiveness of its passive film [37]. For example, when exposed to halogens 

containing media (scope of chapter 3), the susceptibility to localized corrosion will depend on 

the chemical composition, content of micro and macro defects, crystal structure and degree of 

non-crystallinity of the passive film [37]. A schematic presentation of the pitting process of a 

passive metal in Cl
- 
and O2 contain aqueous solution is shown in Fig. 2.10. Once the passive film 

is locally destroyed, an active (inside the pit)–passive (cathode) coupling occurs and the Cl
- 

concentration and pH of the electrolyte inside the pit will change significantly [25]. The Cl
- 
will 

move to the bottom of the pit, while O2 will react with water on the metal surface. The oxidation 
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and reduction reactions occur similarly as those of Eq. 2.1 and 2.3, respectively [29]. The pH 

drop is related to the acidity increase at the bottom of the pit due to the formation of acidic 

condition by the hydrolysis of Al to Al
3+

 and the reaction of Al
3+ 

with Cl
-
 and water [38]: 

 Al
3+ 

+ 2H2O → H
+ 

+ Al(OH)
2+

. (2.13) 

 Al(OH)
2+ 

+ Cl
-
→ Al(OH)Cl

+
. (2.14) 

 Al(OH)Cl
+ 

+ H2O → Al(OH)2Cl
 
+ H

+
. (2.15) 

Indeed, Augustynski et al. [39] reported the incorporation of Cl
-
 ions within the initial 10-

15 Å of the oxide film at the oxide/electrolyte interface, the quantities of incorporated Cl
-
 ions 

increases at higher temperature and at more anodic potentials. 

2.2.5.1 Effects of Allying Concentration on Al Corrosion 

Alloying has been found to be a highly effective method to strengthen Al by forming 

precipitates or secondary particles [40]. However, the presence of precipitation and secondary 

particles enhances corrosion by catalyzing oxygen reduction, increasing the alloy corrosion 

potential, and localizing the electrochemical activity due to chemical inhomogeneity from the Al 

matrix [41]. Recent studies show that alloying can increase the pitting potential (Epit) of Al 

provided that the alloying elements are retained in solid solution [42-45]. For example, age-

hardened 2000 series Al alloys (with Cu as the major alloying element) exhibit poor corrosion 

resistance [41], but Kim et al. observed an ennoblement of Epit with increasing Cu content in Al-

Cu solid solutions [42, 43]. Alloying Al with appropriate transition metals (TMs) such as Mo, 

Mn, W, Nb, Cr, Ta, V, and Zr in metastable solid solutions offers the possibility to significantly 

enhance its pitting resistance in chloride solutions [37]. These TMs improve corrosion resistance 

and decrease pitting susceptibility of Al by increasing the overpotential for anodic dissolution 

and decreasing metastable pit initiation and growth rates [42]. In addition, alloying is an effective 
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way to minimize grain size and produce nanocrystalline microstructure. These refined 

microstructures are likely to promote passive film growth due to the high density of point defect 

sinks and sources at the intersection between grain boundaries and the film/metal interface [46, 

47].  The effects of alloying concentration on Epit, icorr, and hardness of Al are sown in Fig. 2.11.    

Different Al alloys contains different intermetallics (second phases) [48], such as Al6Fe 

and Al3Fe in 1xxx alloys, AlMg and AlMnMg in 3xxx alloys. Particles containing Cu and Fe 

were found to decrease the pitting potentials of Al. The electrochemical nobler phase will serve 

as cathode leading to the anodic dissolution of the matrix. Nisancioglu [49] found that under 

alkaline condition and near the corrosion potential, Al is selectively dissolved from the Al3Fe. 

Mazurkiewicz and Piotrowski [50] reported the dissolution of Al2Cu and the formation of Al
3+

 

and Cu
2+

 in sulfate solution under open circuit and anodic conditions. Other intermetallics such 

as AlMgMn, AlMnCr and AlMnCr were found to have no effect on the corrosion of Al [37].    

2.2.6 Corrosion Mechanism of Mg and Mg Alloys 

As indicated previously, Fig. 2.5 shows Pourbaix diagram for Mg-water system at 25 
°
C 

[30]. Mg metal is thermodynamically stable only at potentials below -2.4 V vs. SHE. Above this 

potential Mg will oxidize to Mg
2+

. At pH greater than 8, Mg(OH)2 is insoluble hence this film is 

considered as a protective hydroxide. In Fig. 2.5, the labels 0, -2, -4 and -6 are the activities of 

the soluble ions in log scale.   

The standard potential of Mg/Mg
2+ 

is -2.37 V vs. NHE, this value increases to -1.7 V vs. 

NHE for Mg corrosion in diluted NaCl solution due to the formation of oxide/hydroxide film on 

the metal surface [51, 52]. 
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Corrosion of Mg occurs as per the following half-cell reactions [53, 54] 

 Mg → Mg
2+ 

+ 2e
-
 (anodic reaction), (2.16) 

 2H2O + 2e
-
→ H2 + 2OH

-
 (cathodic reaction). (2.17) 

The electrons released from the dissolution of Mg (anodic reaction) are consumed by the 

cathodic reaction to generate H2 gas [55]. The Mg
2+

 and OH
-
 ions formed by the anodic and 

cathodic reactions, respectively, will then combine to form Mg(OH)2 film as [53];  

 Mg
2+ 

+ 2OH
- 
→ Mg(OH)2. (2.18) 

Extensive past research [51, 53, 56-58] have shown that the rate of hydrogen evolution 

(hence corrosion rate) increased with applied anodic polarization, a phenomena also known as 

negative difference effect (NDE) [59, 60]. Mg is speculated to undergo electrochemical 

dissolution to an intermediate uni-positive Mg
+ 

(denoted with a question mark in Pourbaix 

diagram), which in turn reacts with water to generate hydrogen gas as follows [53]: 

 Mg → Mg
+
+ e

-
, (2.19) 

 Mg
+ 

+ H2O → Mg
2+ 

+ 1/2H2+ OH
-
. (2.20) 

Generally, the oxide layer formed on Mg surface is composed of an inner MgO and outer 

Mg(OH)2 layer [61-63]. The specific composition and structure of this layer is heavily influenced 

by the alloy composition. For example, Jonsson et al. [64] reported the existence of a layer 

containing both Al and Mg oxides on the surface of AZ91D. Philips and Kish [62] reported the 

formation of two diffused oxide layers on AZ80 Mg alloy exposed to pure water; the outmost 

layer was composed of double Mg-Al hydroxide compound [Mg6Al2(OH)18·4H2O] and 

incorporation of Al with Mg as hydroxide compound, whereas the interlayer at the substrate/film 

interface was enriched in Zn. Nordlien et al. [61] found that for Mg immersed in distilled water, 



www.manaraa.com

 

16 

 

the oxide film  (schematically shown in Fig. 2.12) is composed of a 400-600 nm bottom cellular 

like layer, a 20-40 nm dense middle layer, and a 1800-2200 nm platelet like upper layer.  

As mentioned earlier, Mg is highly susceptible to galvanic corrosion as shown in Fig. 

2.13, The cathode is either an adjacent external metal having lower hydrogen overpotential such 

as Ni, Fe, and Cu (Fig. 2.13.a) or internal cathodes such as impurities or secondary phases 

present within the alloy microstructure (Fig. 2.13.b) [51].  

2.2.6.1 Effects of Allying Concentration and Microstructure on Mg Corrosion 

The role of different alloying elements on the corrosion resistance of Mg has been 

reviewed by Gusieva et al. [54]. Fig. 2.13 summarizes the effect of alloying elements on the 

electrochemical properties of Mg. When alloying elements were added to improve the 

mechanical properties of Mg, the resulting changes in chemical composition and microstructure 

play critical roles in affecting the corrosion behavior of the alloys [54]. Most alloying elements 

have very limited solubility in Mg [65]. By increasing alloy concentration, the fraction of 

secondary phases increases, leading to the formation of micro-galvanic coupling between the Mg 

matrix and the more cathodic secondary phases, hence accelerating the cathodic activity i.e. 

reduction reaction [66]. Al has the highest solubility ~12 wt.% in Mg. Its addition increases the 

strength of Mg from ~70 to 250 MPa [67], but at the same time reduces the ductility from 19% at 

1.9 wt.% Al to 0.7% at 17.8 wt.% Al, due to the formation of β- and eutectic phases [68, 69]. 

Below the solubility limit, the addition of Al reduced the anodic activity and ennobles the 

corrosion potential [70, 71]. The addition of Ag up to 0.1 wt.% increases the hardness of AZ91 

alloy without sacrificing the corrosion behavior [72]. Further increasing the concentration of Ag 

will increase the rate of corrosion due to the galvanic coupling between Mg matrix and the 

Mg4Ag precipitates [73]. It was found that up to ~5 wt.% addition of Mn has no effect on the 
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corrosion behavior of Mg. Mn is commonly added to Mg-Al and Mg-Al-Zn. The formation of 

compound such as Al8Mn5, Al6Mn and Al4Mn reduces the corrosion rate. It was reported that the 

addition of Mn isolates Fe in AlMnFe intermetallic particles, hence reducing the effect of micro-

galvanic coupling [74]. The high solubility of Y in Mg, similar electrochemical potential, same 

crystal structure, and similar atomic radii promotes the effective strengthening of Mg by the 

formation of precipitates or secondary particles [16, 75]. The addition of Y with other rare earth 

elements was also found to enhance the creep resistance of Mg alloy due to the formation of Y 

rich phases [16]. Nd was found to be biocompatible [76, 77] and effective in enhancing the 

corrosion resistance of Mg alloys by reducing micro-galvanic effects due to the presence of 

intermetallic compounds [78-80]. Nd also enhances the mechanical properties of Mg by forming 

intermetallic phases at the grain boundaries [17, 78, 81]. Zr addition increases the strength of Mg 

mainly by grain refinement [82]. Due to the limited solubility of Zr in Mg, the undissolved Zr 

particles act as selective nucleation cites during solidification. The corrosion resistance of Mg 

was found to be enhanced when the concentration of Zr is kept below 2% [16]. Li and Ca are 

more electronegative than Mg and their addition increases the anodic reactions [83, 84]. Ni, Fe 

and Cu are insoluble in Mg and found to increase the cathodic activities [66, 85].  

In addition to alloying, materials microstructure such as grain size and texture also affects 

corrosion of Mg alloys [86, 87]. The enhanced corrosion behavior of Mg by reducing grain size 

is related to the enhanced corrosion performances of the passive layer [88], β-phase [89] and 

corrosion product layer [90]. Hoog et al. [91] reported the reduction in anodic kinetics of 

severely deformed Mg sample with refined grains. Argade et al. [92] used friction stir processing 

to reduce the grain size of Mg-Y-RE alloys, and found that the ultra-fine grain microstructure 

exhibited highest polarization resistance, most positive pitting and repassivation potentials 
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compared to coarse grained counterpart. Ralston et al. [93] suggested that the environment is the 

controlling factor in determining the grain size- electrochemical response relationship.  

Even for chemically homogeneous Mg alloys, where no precipitates induced galvanic 

corrosion forms, the change in the crystallographic texture is expected to influence the corrosion 

resistance. Grains with different crystallographic orientation i.e. electrochemical activities will 

form galvanic coupling.  For Mg alloys, the atomic density of the basal (0001), prismatic type 2 

(112̅0), prismatic type 1 (101̅0) planes are 1.13x10
19

, 6.94x10
18

, and 5.99x10
18

 atoms/m
2
, 

respectively. The surface energy have been estimated to be 1.54x10
4
, 2.99x10

4
 and 3.04x10

4
 

J/m
2
 for (0001), (112̅0), and (101̅0) plane, respectively [94]. It was reported that Mg alloys with 

high basal plane texture exhibited better corrosion resistance compared with those with high the 

prismatic planes on the surface. Thus alloys having high basal preferred orientation are expected 

to exhibit lower corrosion rates compared with alloys having larger amount of high surface 

energy texture. 

2.3 Fundamental Mechanisms of Tribocorrosion 

Tribocorrosion is a complex process of material’s degradation due to the synergistic 

contribution of chemical corrosion and mechanical wear in tribological contact [95-97]. 

Tribocorrosion is expected to take place under different applications such as in orthopedic 

implants, nuclear power plants, marine and offshore industries, chemical pumps, food processing 

and mining machineries.  

During tribocorrosion, the chemical corrosion and mechanical wear are related by [98]; 

 T
 
= W0

 
+ C0 + S. (2.21) 
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where T is the total material loss, W0 is the material loss due to wear without the influence of 

corrosion, C0 is the material loss due to corrosion without the influence of wear, and S is the 

synergistic effect of corrosion induced wear (∆WC
 
) and wear induced corrosion (∆CW). 

 S
 
= ∆WC

 
+ ∆CW. (2.22) 

Landolt et al. [96] categorized the different conditions under which tribocorrosion 

degradation might occur as schematically shown in Fig 2.14. Here, two or three body contacts 

between the relative sliding surfaces are expected. Movements could be either unidirectional or 

reciprocating. Fretting is a condition where the reciprocating motion is in the range of few 

micrometers. Ball bearing is an example of rolling contact configuration. Pipes and pumps 

carrying slurry particles is an example of erosion corrosion. Landolt et al. [96] also categorized 

the parameters that affect sliding tribocorrosion into four categories: 1) material parameters 

(hardness, plasticity, microstructure, surface roughness, wear debris, and oxide film properties). 

2) solution parameters (viscosity, conductivity, pH, corrosively, temperature, and oxygen 

content). 3)  electrochemical parameters (applied potential, ohmic resistance, oxide film growth, 

valence, active dissolution, and repassivation kinetics). 4) mechanical parameters (normal load, 

sliding velocity, motion, contact bodies, alignment, and vibrations). Dearnley and Aldrich-Smith 

[99] categorized the tribocorrosion processes of hard cathodic coating on a metal surface such as 

coating stainless steel with S-phase and CrN into three categories: 1) removal and regeneration 

of passive film during sliding contact, where no chemical reaction is expected to occur on the 

substrate and the regeneration of the passive film reduces the susceptibility to localized 

corrosion, 2) removal of the coating due to the formation of blisters in aggressive corroding 

media, where Cl
-
 ions are expected to breakdown the passive film, de-bond the coating from the 



www.manaraa.com

 

20 

 

substrate and ultimately attack the substrate, and 3) abrasion of the coating due to the roughening 

of the material interfaces when active counter pieces are used.         

Tribocorrosion is critical for passive metals and alloys. During corrosion these metals are 

protected by their own passive films. But once mechanical wear takes place, the passive film is 

locally destroyed generating galvanic coupling between the passive and non-passive regions. 

Subsequently early component failure is mostly expected [95, 97, 100, 101]. Fig. 2.15 shows a 

schematic presentation of possible relevant mechanisms influencing the tribocorrosion behaviors 

of passive metals and alloys. Once a mechanical wear is applied, the native oxide film is locally 

removed, and the underneath metal region is now exposed to the corrosive media. The worn area 

(anode) exhibit high anodic current density transient, while the rest of the still passive region 

(cathode) exhibits increase in the cathodic current density [102]. In supersaturated alloys of Al 

and transition metals (scope of chapter 4), the re-growth of passive film is governed by two 

counteracting effects, a desirable effect by the high density of point defect sinks and sources at 

the intersection between grain boundaries and the film/metal interface, and a non-desirable effect 

due to the increase in the dissolution current densities and pitting tendency at the still passive 

regions [46]. The cathodic reaction is mainly governed by the extent of grain boundaries 

intersections and film defect injection and sinks. The existence of alloying elements intended to 

increase the hardness; hence the tribological properties of Al are also expected to alter the 

repassivation of worn areas, particularly at high alloying concentrations and finer grain size, 

where additional deformation methods such as grain boundary segregation and grain rotation are 

expected to occur. Finally, when third parties such as wear debris agglomerate between the 

indenter and the worn surface, the rate of passive film removal is expected to aggravate. 
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Table 2.1 List of common Al alloys, their properties and applications [10]. 

Alloy 

ID 

Major alloying  

elements 
Properties Applications 

1xxx - 

Work hardened 

Excellent corrosion resistance 

High thermal and electrical 

conductivity 

Electric condensers 

Lightning devices 

Decorative  

2xxx Cu 

Precipitation hardened 

Susceptible to stress corrosion 

cracking 

Aircraft and aerospace  

Cycling frames 

3xxx Mn 

Work hardened 

Moderate strength 

Good workability 

Very high resistance to corrosion 

Cladding panels 

Roofing sheets 

Heat exchanger tubing 

Circles for kitchen utensils 

4xxx Si Good corrosion resistance 
Brazing and welding products 

Cladding panels 

5xxx Mg 

Strongest non-heat treatable Al 

alloys 

High corrosion resistance in alkali 

media 

High as-welded strength 

Chemical processing  

Food handling 

Marine applications 

6xxx Mg & Si 

Precipitation hardened 

Good corrosion resistance 

Medium strength 

Formability and weldability 

Aerospace applications 

Marine applications 

Automotive applications 

7xxx Zn 

Precipitation hardened 

Heat treatable 

High resistance to general 

corrosion 

High strength 

Structural, marine, machinery 

Process equipment 

8xxx other Good formability 

Fins for heat exchangers 

Spiral tubes 

Thin foils 
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Table 2.2 List of common Mg alloys, their properties and applications [10, 103, 104]. 

Alloy 

ID 

Major alloying  

elements 
Properties Applications 

AZ31 Al, Zn, Mn 
Medium strength 

Weldable 

Good formability 

Aircraft fuselage 

Cell phones 

Laptops 

AZ91 Al, Zn, Mn 

Excellent castability 

RT good mechanical properties 

Good corrosion resistance 

Door mirror brackets 

Valve and cam covers 

AM50 Al, Mn High elongation and energy 

absorption 

Good casting properties 

High mechanical strength 

High-pressure die casting 

Steering wheels 

Seats 

AM60 Al, Mn 

Fans 

Steering wheels 

Inlet manifolds 

ZE41 Zn, Nd 
Good strength 

Castable 

Ballistics 

Aircraft parts 

QE22 Ag, Nd 
Weldable 

High proof stress 
Aerospace applications 

ZK60 Zn, Zr Good strength and ductility 

Military components 

Tent poles 

Sports equipment 

WE43 Y, RE, Zr 

Good castability 

High heat resistance 

High creep resistance 

Ageing resistance 

Good fatigue strength 

Corrosion resistance 

Helicopter transmission 

Race cars 

Biological applications 
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Table 2.3 Standard potentials of metals [29]. 

Type Reduction reaction E
O 

(VSHE) 

Noble Au
3+

 + 3e
-
 = Au + 1.498 

 O2 + 4H
+
 + 4e

-
 = 2H2O + 1.229 

 Pt
2+ 

+ 2e
-
 =Pt + 1.200 

 Pd
2+ 

+ 2e
-
 =Pd + 0.987 

 Ag
 2+ 

+ 2e
-
 =Ag + 0.799 

 Fe
3+

 + e
-
 = Fe

2+
 + 0.770 

 Cu
 2+ 

+ 2e
-
 =Cu + 0.337 

 2H
 + 

+ 2e
-
 =H2    0.000 

 Fe
3+

 + 3e
-
 = Fe - 0.036 

 Pb
2+ 

+ 2e
-
 =Pb - 0.126 

 Ni
2+ 

+ 2e
-
 =Ni - 0.250 

 Co
2+ 

+ 2e
-
 =Co - 0.277 

 Cd
2+ 

+ 2e
-
 =Cd - 0.403 

 Fe
2+ 

+ 2e
-
 =Fe - 0.440 

 Cr
3+

 + 3e
-
 = Cr - 0.744 

 Zn
2+ 

+ 2e
-
 =Zn - 0.763 

 Ti
2+ 

+ 2e
-
 =Ti - 1.630 

 Al
3+

 + 3e
-
 = Al - 1.662 

 Mg
2+ 

+ 2e
-
 =Mg - 2.363 

 Na
+ 

+ e
-
 =Na - 2.714 

 K
+ 

+ e
-
 =K - 2.925 

Active Li
+ 

+ e
-
 =Li - 3.045 
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Figure 2.1 a) U.S. annual consumption and cost of Al, b) Al major markets consumptions in 

2015 [11]. 

 

 

 

 

Figure 2.2 a) U.S. annual consumption and cost of Mg, b) Mg major markets consumptions in 

2015 [7]. 
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Figure 2.3 Simple schematic of corrosion process of Mg (left) and Al (right) in neutral aqueous 

solution with dissolved oxygen. 

 

 

Figure 2.4 Pourbaix diagram for the Al-water system at 25 °C [10]. 
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Figure 2.5 Pourbaix diagram for the Mg-water system at 25 °C [30]. 

 

 

Figure 2.6 Schematic presentation of cathodic and anodic polarization curves [10]. 
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Figure 2.7 Polarization diagram of passive metals. 

 

 

 

Figure 2.8 Schematic sinusoidal potential excitation for impedance measurements [29]. 
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Figure 2.9 Nyquist a) and bode b) representation of the impedance behavior. 

 

 

 

Figure 2.10 Pitting corrosion process of metal (M) in Cl
-
 containing aqueous solution [25]. 
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Figure 2.11 Effects of alloying elements on a) pitting potential, b)icorr and c) hardness of Al [9, 

44, 105-112]. 
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Figure 2.12 Schematic of the trilayer oxide film structure on corroded magnesium [10].  

 

Figure 2.13 Schematic of external a) and internal b) galvanic corrosion [51].  
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Figure 2.14 Effect of alloying elements on the electrochemical properties of Mg [54]. 

 

 

Figure 2.15 Schematics of the different types of tribological contacts during tribocorrosion [96]. 
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Figure 2.16 Schematic presentation of relevant mechanisms influencing the tribocorrosion of 

passive metals and alloys. 
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CHAPTER 3: EFFECT OF ALLOY CONCENTATION ON THE CORROSION 

RESISTANCE OF AL AND AL-MN THIN FILMS 
1
 

 

3.1 Introduction 

Aluminum (Al) films are frequently applied as a corrosion protection coating for steel [4, 

5], magnesium alloys [6, 7], and NdFeB magnets [8] etc., replacing the toxic cadmium coatings 

[9]. Al coatings can be deposited using various methods including electroplating [4], physical 

and chemical vapor deposition [6, 113], and hot-dipping [5]. An amorphous semiconducting 

passive film forms on the surface of Al in neutral (pH 4-9) solutions to protect the metal 

underneath from corrosion [46, 114]. However, this passive film is still vulnerable to local attack 

from different halide ions in saline environments, which eventually leads to pitting and crevice 

corrosion of Al. In addition to its pitting susceptibility, the low mechanical strength of Al coating 

also leads to poor wear resistance, which greatly limits its potential usage in industrial 

applications where mechanical contact and corrosive environment coexist [41].  

Alloying has been found to be a highly effective method to strengthen Al by forming 

precipitates or secondary particles [40]. However, the presence of precipitation and secondary 

particles enhances corrosion by catalyzing oxygen reduction, increasing the alloy corrosion 

potential, and localizing the electrochemical activity due to chemical inhomogeneity from the Al 

matrix [41].  Recent studies show that alloying can increase the pitting potential (Epit) of Al 

                                                 
1
 Information of this chapter has been published as Mraied, H., W. Cai, and A.A. Sagüés, Corrosion resistance of Al 

and Al–Mn thin films. Thin Solid Films, 2016. 615: p. 391-401. 
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provided that the alloying elements are retained in solid solution [42-45]. For example, age-

hardened 2000 series Al alloys (with Cu as the major alloying element) exhibit poor corrosion 

resistance [41], but Kim et al. observed an ennoblement of Epit with increasing Cu content in Al-

Cu solid solutions [42, 43]. Alloying Al with appropriate transition metals (TMs) such as Mo, 

Mn, W, Nb, Cr, Ta, V, and Zr in metastable solid solutions offers the possibility to significantly 

enhance its pitting resistance in chloride solutions [37]. These TMs improve corrosion resistance 

and decrease pitting susceptibility of Al by increasing the overpotential for anodic dissolution 

and decreasing metastable pit initiation and growth rates [42]. In addition, alloying is an effective 

way to minimize grain size and produce nanocrystalline microstructure. These refined 

microstructures are likely to promote passive film growth due to the high density of point defect 

sinks and sources at the intersection between grain boundaries and the film/metal interface [46, 

47].   

Al-Mn is chosen in the present work as a model system to investigate the effects of alloy 

concentration and microstructure on the corrosion resistance of Al-TM solid solution thin films. 

This binary system exhibits a wide range of equilibrium phases from solid solution to more than 

nine intermetallics [115]. Such rich variety of phases indicates the possibility of forming tunable 

nanostructures by adjusting the alloying concentration [116, 117]. Unlike Mo, Ta, Cr, etc. which 

improve the pitting resistance of Al by increasing the solute concentration in the passive layer 

that impede the ingress of chloride ions, Mn is found to be absent from the passive film of Al-

Mn in chloride solutions [118, 119]. Instead, it was suggested that Mn solute atoms improve the 

pitting resistance by hindering the pit growth kinetics of Al [109, 118]. Despite these past 

studies, findings on how alloying concentration affects the corrosion resistance of Al-Mn are not 

fully consistent. Moffat et al. [118] investigated the corrosion resistance of Al-Mn alloys with 0 
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– 26 at.% Mn electrodeposited at 150 
°
C. They found that Epit is greatly increased for crystalline 

(0 – 5 at.% Mn) and amorphous (22 – 26 at.% Mn) Al-Mn but decreased at the intermediate 

composition (5 – 22 at.% Mn) where crystalline and amorphous phases coexist. On the other 

hand, Frankel et al. [109]found alloying with Mn enhanced pitting resistance of Al but both the 

pitting and repassivation potentials of Al-Mn alloys were not strong functions of Mn 

concentration. In addition, their work did not include characterization of the alloy microstructure 

or pit morphology. Recently, Reffass et al. [120] showed that the Epit increases monotonically 

with alloying concentration up to 32 at.% Mn while the corrosion current density remain 

insensitive to alloy composition. Given the variability and limitations of prior findings noted 

above, the present work aims at evaluating the composition-corrosion resistance relationship by 

investigating the role of Mn on the microstructure and corrosion resistance of Al-Mn solid 

solutions. Attention is given to the microstructure and surface morphology of as-deposited and 

corroded samples toward better understanding the roles of composition as well as microstructure 

on corrosion resistance.  

3.2 Experimental Procedure 

The equilibrium solubility of Mn in Al at room temperature is low, ~ 0.62 at.% [121], so 

nonequilibrium processing techniques are needed to achieve extended solubility. Physical vapor 

deposition (PVD) with its associated high quench rates was chosen here to produce 

supersaturated Al−Mn alloys with crystalline, dual phase, and amorphous microstructure. Pure 

Al and Al-Mn alloys with 5.2, 11.5, and 20.5 at.% Mn were sputtered on Si wafer using a CRC 

sputter coater at 80 W radio frequency power under Ar (99.99%, 5 mTorr) atmosphere. To 

produce Al-Mn alloys, an Al (99.99%) sheet with uniformly spaced holes was placed over a Mn 

(99.999%) disc and used as the target, 6 cm away from the specimen. The number and size of the 
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holes on the Al sheet was varied to achieve different alloy compositions. Post deposition 

chemical analysis confirmed the formation of compositionally homogenous films over the entire 

sample size of 1.2 X 2 cm
2
. Prior to deposition, the Si wafers were etched with 1:50 hydrofluoric 

acid water solution to remove the native oxide layer to improve coating adhesion. Both Al and 

Al-Mn were deposited with a nominal film thickness of ~ 1 µm, confirmed using a Detak 3030 

ST profilometer. All experiments were performed on as-deposited samples without any 

pretreatment.  

The as-deposited samples were characterized using scanning electron microscopy (SEM, 

Hitachi SU-70), energy-dispersive X-ray spectroscopy (EDS, EDAX-Phoenix attached to SEM, 

Hitachi S-800), and grazing incidence X-ray diffraction (XRD, PANalytical X’Pert). 

Transmission electron microscopy (TEM) analysis including bright-field (BF), dark-field (DF) 

imaging, and selected area diffraction (SAD) was performed using Tecani F20 TEM. TEM 

samples were prepared by directly sputtering Al and Al-Mn alloys on continuous carbon film 

TEM grids for 15 min, which resulted in a sample thickness of ~150 nm.  

Electrochemical behavior was characterized at regimes of mild and severe environmental 

exposure, consisting respectively of naturally aerated 0.01 and 0.6 M NaCl aqueous solutions, 

both pH ≈ 6.4 and at ambient temperature. The evaluations were conducted in 3-electrode cells 

where the deposited samples, a mixed metal oxide coated titanium mesh, and a commercial 

silver-silver chloride electrode (1 M KCl internal solution) were used as the working, counter, 

and reference electrode respectively. Prior to the corrosion tests, the sample surfaces were 

covered with stop-off lacquer except to expose a square region with an effective surface area of 1 

cm² to the electrolyte, and another region allowing for an electrical contact using an alligator 

clip.  Optical microscopy was performed after each test and results from samples that showed 
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any indication of crevice corrosion under the stop-off lacquer were discarded. The results 

reported here for each test condition correspond to at least three separate tests without crevice 

corrosion. All tests were conducted with a Gamry Reference 600® potentiostat. 

In the severe 0.6 M NaCl regime, in addition to open circuit potential (Eoc) 

determinations only short-term solution potentiodynamic polarization (PD) measurements were 

conducted, after allowing 1 hr of immersion for Eoc to approach a stable regime. The PD scans 

were conducted in the anodic direction at a rate of 0.167 mV/s, starting from a potential ~150 

mV more negative than Eoc. The scans were terminated when a rapid increase in the anodic 

current density took place and reached 10 µA·cm
-2

. Given the low current densities and solution 

resistivity involved, no correction was made for solution resistance effects in these tests. The 

potential at which that rapid increase took place was named Epit.  A nominal value of the 

cathodic polarization slope (βc) was assigned by fitting a straight line to the portion of the 

polarization curve that corresponded to potentials more than 50 mV lower than Eoc. A nominal 

value of the anodic polarization slope (βa), was likewise assigned, using the portion of the curve 

that started at potentials > 50 mV higher than Eoc and ended at Epit. Extrapolation of both of those 

trends to Eoc and suitable averaging of both was used to obtain a nominal corrosion current 

density (icorr). The icorr was converted to a nominal corrosion rate in (µm/y) by Faradaic 

conversion (1 µA.cm
-2

 ≈ 10.9 µm/y) treating the corrosion as if it were uniform with formation 

of Al
+3

. It is noted that unless indicated otherwise current densities and associated corrosion rates 

are reported as a value averaged over the nominal area of the specimen, recognizing that 

corrosion rates at localized features may be much larger. Hence, the reported values of corrosion 

rates in µm/year are considered as a rough estimation and are used only for comparing the 

corrosion resistance of Al-Mn with various Mn%. The unit of corrosion rate (µm/year) is chosen 
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here to be consistent with that commonly adopted in the literature. However it should be noted 

that the corrosion experiments performed here were over a much shorter period of time than one 

year. The reported polarization slopes may reflect passive film properties and ohmic components 

due to current localization, and are not viewed as representing simple Tafel behavior. Likewise, 

the potential Epit has been named so by analogy to the behavior observed upon pitting in bulk 

specimens, but the morphology of localized corrosion in these thin films may differ from that of 

conventional pits, as discussed later on.  

In the milder, 0.01 M NaCl regime Eoc and PD measurements were conducted in selected 

specimens following the same methodology as for the 0.6 M NaCl exposures. The milder 

conditions enabled longer term evaluations, so with another set of specimens, Eoc measurements 

were conducted regularly over periods of up to 108 hours, supplemented by non-destructive 

electrochemical impedance spectroscopy (EIS) tests via 10 mV rms sinusoidal potential 

excitation around Eoc in the frequency range of 10 mHz to 100 kHz, 5 points per decade. 

Analysis of the EIS results, described further below, was conducted to obtain a nominal value of 

icorr as function of exposure time. Finally, corrosion tests results plotted in the all figures here are 

averages of at least three data points with error bars representing the range of the data. SEM 

examination was conducted on one of the exposed specimens of each alloy after extraction from 

the test solution for the longer duration tests. Post-corrosion cross-sectional samples were 

prepared from areas exposed to the corrosive environment using focused ion beam microscope 

(FIB, Quanta 200 3D Dual Beam). 
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3.3 Results and Discussion 

3.3.1 Materials Characterization 

EDS chemical analysis with spatial resolution of ~200 nm, confirmed the formation of 

compositionally homogeneous Al-Mn alloy films with 5.2, 11.5, and 20.5 at.% Mn, hereafter 

noted as alloy A5, A11, and A20, as listed in Table 1. The average oxygen concentration 

measured for all alloys was 0.62 ± 0.17 at.%. SEM images of as-deposited Al (A0) and Al-Mn 

alloys are shown in Fig. 3.1. From alloy A0 to alloy A20, the surface morphology became 

smoother, indicating the formation of finer microstructures (e.g. smaller grain size and/or greater 

content of amorphous phase) at higher alloying concentration. The faceted angular structures of 

alloy A0 and alloy A5 indicate the formation of crystalline phases where each angular structure 

often corresponds to an individual grain [122]. Surfaces of alloy A11 and alloy A20 exhibited 

compact round nodules, similar to those observed in thin films with ultrafine grains and/or high 

amount of amorphous phase [123].    

To establish the phase nature of the deposits, grazing-incidence angle XRD line scans 

were performed on a sample of each alloy. The results are shown in Fig. 3.2. The diffraction 

pattern of alloy A5 was characteristic of a face-centered-cubic (fcc) crystalline structure, similar 

to that of pure Al (A0), indicating the formation of super-saturated solid solution well beyond the 

equilibrium solubility. For the alloy A11, broad fcc diffraction peaks and a hint of a diffuse peak 

at 2θ ≈ 42° were observed, indicating that an amorphous phase coexisted with α-Al. At the 

highest alloying concentration, the alloy A20 was completely amorphous, where all crystalline 

diffractions were absent and only a broad hump around 2θ ≈ 42° was observed. In addition to 

peak broadening, a right shift of the (111) diffraction peaks was observed from alloy A0 to alloy 

A11, indicating a decrease of lattice constant (as listed in Table 1) with increasing alloying 
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concentration. This behavior is similar to that reported for electrodeposited Al-Mn [116], 

suggesting that Mn, which has a Goldschmidt radius ~ 11% smaller than Al, is substitutionally 

incorporated into the Al lattice.    

Bright-field TEM imaging and selected-area diffraction (SAD) analysis were performed 

to reveal the detailed microstructure of the as-deposited samples, as shown in Fig. 3.3. The 

average in-plane grain size of alloy A0, A5, and A11 was 42, 15, and 12 nm respectively, 

measured using the line-intercept method from both bright-field and dark-field TEM images. The 

SAD patterns showed that both alloy A0 and alloy A5 exhibited discrete diffraction rings 

associated with single fcc phase (Fig. 3.3(a-b) insets). A diffuse halo and sharp diffraction rings 

coexisted in the SAD pattern of alloy A11, confirming the presence of a dual-phase 

microstructure, in agreement with the XRD results. High-resolution TEM images (Fig. 3.3(d)) of 

alloy A20 indicated the absence of short-range-order, and the halo ring of the corresponding 

SAD pattern confirmed the amorphous nature of this alloy. In summary, by tuning the Mn 

content in the alloy from 5.2 to 20.5 at%, a microstructure transition from nanocrystalline, dual-

phase, to complete amorphous phase was achieved. 

3.3.2 0.6 M NaCl-Short Term Exposures 

Representative PD results in this more aggressive electrolyte are shown in Fig. 3.4. The 

crossover potentials for zero current (Ezero current) agreed reasonably well with the values of 

Eoc observed before initiating the scans. Pure Al (A0) showed highly active dissolution 

immediately on entering the anodic current  regime, while all Al-Mn alloys showed regions of 

predominantly passive behavior (likely with some extent of localized activity), followed by a 

rapid increase in current density at Epit. Additional tests which included a return scan confirmed 

that the increase in current was associated with permanent corrosion damage by showing a wide 
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return loop and lateral propagation of a metal loss front revealing the silicon substrate. The Eoc 

values and the electrochemical parameters obtained from PD measurements are shown in Fig. 

3.5 and Table 3.2. Epit increased monotonically with Mn content. This observation is similar to 

that of  Moffat et al.[118]. At the Eoc all Al-Mn alloys exhibited lower nominal corrosion rate 

compared to pure Al, consistent with the latter being in a distinct active dissolution pitting 

regime, while the others approached a passive condition. The amorphous Al-Mn (alloy A20) 

exhibited the smallest nominal corrosion rate, 0.9 µm/year. Ezero current of nanocrystalline 

(alloy A5) and complete amorphous (alloy A20) Al-Mn were both anodic compared to that of 

pure Al (A0). However Ezero current of the dual-phase (alloy A11) was more cathodic, -750 

mVAg/AgCl.  

3.3.3 0.01 M NaCl-Short and Long Term Exposure 

Representative PD results in this milder electrolyte are shown in Fig. 3.6. The IR drop in 

this electrolyte is estimated to be less than 2 mV thus is neglected here. As for the other 

electrolyte, the crossover potentials for zero current agreed reasonably well with the values of Eoc 

observed before initiating the scans. Despite the milder electrolyte, Alloy A0 showed highly 

active dissolution immediately on entering the anodic current regime as it did in the 0.6 M NaCl 

tests. The Al-Mn alloys, which had shown indications of an initially passive condition in 0.6 M 

NaCl did as expected the same in 0.01 M NaCl. Unlike in the more severe environment however, 

none of the Al-Mn alloys in 0.01 M NaCl showed clear indication of onset of pitting even when 

anodically polarized up to +0.8 V as shown also in (Fig. 3.7(a)). The Eoc values and the 

electrochemical parameters obtained from PD measurements are shown in Fig. 3.7 and Table 

3.3. Compared to that of pure Al (A0), the Ezero current of nanocrystalline (alloy A5) was more 

cathodic; however it was more anodic for the dual-phase (alloy A11) and the complete 
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amorphous (alloy A20). The EOC of the nanocrystalline (alloy A5) was more cathodic compared 

to that of pure Al. Similar to the behavior in the more aggressive electrolyte, all Al-Mn alloys 

exposed to the milder electrolyte exhibited lower nominal corrosion rate compared to pure Al. 

The amorphous Al-Mn (alloy A20) exhibited the smallest nominal corrosion rate, 0.7 µm/year. 

For the long term tests Fig. 3.8 shows that the Eoc of pure Al was always more negative 

than that of all Al-Mn alloys, shifting towards more negative values as exposure time increased 

and reaching ~ -900 mVAg/AgCl at 24 hrs. This evolution was indicative of stable local passivity 

breakdown even in this relatively mild environment, and was confirmed by direct observation as 

shown in Fig. 3.9 where through thickness macroscopic pits are clearly seen.  Given this early 

manifestation of corrosion, the Al specimens were removed from the solution at 24 hrs.  

In contrast to pure Al, the three Al-Mn alloys showed nobler Eoc values generally 

indicative of a predominately passive regime [120]. Eoc values started at around -450 to -550 

mVAg/AgCl. For alloys A11 and A20, Eoc shifted towards more negative values around -750 to -

800 mVAg/AgCl for up to 24 hrs but became increasingly nobler from then on, suggesting a period 

of some activity but eventually the development of a more stable passive regime [120]. Alloy A5 

showed a consistently elevated value of Eoc, around -450 mVAg/AgCl over the entire exposure 

period suggesting stable passive behavior from the onset. After about 90 hrs of immersion, the 

Eoc values for all three Al-Mn alloys tended to be comparably noble, similar to behavior 

observed by Refass et al indicative of predominantly passive conditions [120]. This 

interpretation was consistent with visual observation that showed no macroscopic pitting on any 

of the three Al-Mn alloys after 108 hrs of immersion, as exemplified in Fig. 3.9 for alloy A20.   

EIS (Fig. 3.10) provided further insight on the relative corrosion resistance of the alloys 

evaluated.  The Nyquist diagrams show a prominent high frequency semicircle followed by the 
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onset of another at lower frequencies. This behavior was interpreted tentatively here with the 

treatment proposed by Akhoondan [124] by fitting the results to the impedance projected by the 

equivalent circuit and parameters shown in Fig. 3.11. There Rs represents the ohmic solution 

resistance, which was found, as expected, to be of a value consistent with the cell dimensions 

and electrolyte resistivity and independent of the material tested. The interfacial impedance is 

assumed to consist of a nearly ideal capacitive element (CPE1, with impedance represented by 

ZCPE = Yo
-1

 (jω)
-n   

 where Yo is a constant, j = (-1) 
1/2

, ω is the angular frequency and n is a real 

number between 0 and 1), representative of the capacitance of the passive film, in parallel with 

components representing the impedance associated with the Faradaic reactions on the interface. 

Those processes consist of some form of anodic dissolution, either via slow ionic transport 

through the bulk film or at discrete film flaws, and a cathodic process that is likely to involve 

oxygen reduction given the aerated solution condition, and expected to take place preferentially 

at localized film imperfections. In the adopted interpretation [124] the impedance components of 

both reactions are assumed to be acting in parallel, but the one for the anodic reaction is taken as 

being large enough to be neglected given the high polarizability of that reaction in a 

predominantly passive metal. The remaining dominating impedance, that of the cathodic 

reaction, may be viewed as being responsible for the observed two-loop behavior by proposing 

that it reflects the presence of a two-step cathodic process [124]. In such treatment the impedance 

can be represented by a fast-reacting term Rct, and a slower reacting component corresponding to 

the parallel combination of R2 and CPE2, with Rct as a charge transfer resistance that is 

approximately related to the surface-averaged corrosion current density on the sample by Stern-

Geary equation [125]. 
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 icorr = B/Rct   (3.1) 

where B has a value of 52 mV, in the order of those commonly assumed for the Stern-Geary 

constant of predominantly passive metals [126].  The equivalent circuit produced simulations 

that closely matched the experimental behavior for much of the frequency range sampled, as 

shown by the solid lines in Fig. 3.10. The evolution of equivalent circuit parameters as a function 

of immersion time is shown in Fig. 3.12, which also indicates that reasonably similar trends were 

obtained with multiple replicate specimens.  

As illustrated in Fig. 3.10, the high frequency semicircle was only moderately depressed, 

which on analysis yielded generally elevated values of the CPE parameter n as shown in Fig. 

3.12(c). That was especially so at the beginning of the exposure with n ~0.91 for Alloy A5 and 

only somewhat smaller values for the other alloys. Under those conditions the CPE parameter Yo 

may be viewed as a rough estimate of the film capacitance C via  

 C ~ Yo·sec
n-1

, (3.2) 

recognizing that the expression becomes increasingly inaccurate as n decreases from unity [127]. 

From there, a nominal thickness of the passive film (d) may be obtained from the following 

equation [128] 

 d = εεoA/C , (3.3) 

where ε is the dielectric constant of the passive film (taking it to be ~10 for aluminum oxide 

[129]), εo is the permittivity of vacuum (8.85x10
-14

 F˖cm
-1

) and  A is the exposed surface area 

(~1 cm
2
) . As shown in Fig. 3.12(d), the passive film thickness (d) for all alloys at early ages was 

in the range of ~1–1.5 nm. Those values are comparable to those reported in other investigations 

for films resulting from natural air oxidation of Al alloys [124, 128], thus supportive of the 

interpretation of the nature of the reactive term responsible for the high frequency semicircle. Per 
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Fig. 3.12(b-c) the values of n and Yo for Alloy A5 remained close to 0.9 and 8 10
-6

 F sec
(1-n)

 

respectively  during the entire exposure period, suggesting that the passive film thickness was 

not changing much with exposure time. For the other alloys the values of n and Yo experienced 

moderate decreasing and increasing trends respectively. The corresponding values of d remained 

not far from those experienced initially. Further interpretation of any apparent trends of changes 

in d with time was not attempted, as they may merely reflect artifacts from data scatter and the 

increasing uncertainty in the applicability of Eq. 3.2 associated with decreasing values of n. 

As shown in Fig. 3.12(a) the values of nominal corrosion rate (estimated from EIS via 

Eq. 3.1 were consistently the lowest (by about one order of magnitude over much of the exposure 

period) for Alloy A5 than for the others. Alloy A20 had a brief initial period of low nominal 

corrosion rate but rapidly approached the values for A0 and A11 afterwards. Alloy A0 had the 

highest nominal corrosion rate, consistent with the early conspicuous surface deterioration 

illustrated in Fig. 3.9.  

3.3.4 Microstructure and Electrochemical Behavior 

Fig. 3.13(a) summarizes the average nominal corrosion rate estimates from PD and EIS 

tests of all the alloys as a function of Mn% in both test environments and time frames 

investigated. While the estimates were conducted using different techniques and working 

assumptions, both methods still indicate as expected [130] corrosion severity that increased with 

increasing [Cl
-
]. It is also noted that despite the 60-fold change in [Cl

-
], the short term results 

show similar ranking in nominal corrosion rate, with A5 and A20 exhibiting the slowest and A0 

and A11 the highest nominal corrosion rates by roughly the same proportions. In the long term 

0.01 M NaCl solution evaluation, alloy A5 showed the best indications of passive film stability 

of all alloys evaluated, with consistently noble Eoc values (Fig. 3.8), lowest (although somewhat 
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increasing with time) nominal corrosion rate, well defined indications of retaining the initial 

passive film thickness throughout the entire period of exposure, and as shown later visual 

absence of localized corrosion after 108 hrs.  

The behavior in 0.6 M [Cl
-
] allows comparison with work of others also performed in 

comparably aggressive solutions. The relatively high nominal corrosion rate found here for the 

dual phase alloy as compared to its nanocrystalline or amorphous Al-Mn counterparts is similar 

to that reported by Refass et al. [120], Merl et al. [105] and Sanchette et al. [44].  It is likely 

associated with local galvanic coupling between the crystalline and amorphous phases due to 

their expected different electrochemical properties. Indeed, phase heterogeneity as a potentially 

source of local galvanic coupling has already been reported in Al- [131] and Zr-based [132] 

metallic glasses. For example, Li. et al. [132] found that partially crystallized Zr65Al7.5Cu17.5Ni10 

alloy experienced accelerated dissolution compared to its crystalline or complete amorphous 

counterparts, as a result of high chemical activity at the crystalline-amorphous interfaces and 

grain boundaries. 

To clarify the correlation between composition and microstructure and how their 

interplay affect corrosion resistance in the more aggressive media, Fig. 3.13(b) summarizes the 

evolution of Epit as a function of Mn content and microstructure from the current work and 

previous reports [109, 118, 119]. Red, green, and blue symbols are used to represent crystalline, 

dual phase, and amorphous microstructure respectively. It can be seen that the addition of Mn up 

to 10 at% was highly effective in improving pitting resistance (as inferred from the value of Epit) 

in 0.1–0.86 M chloride solutions. This effect was less significant at higher compositions (beyond 

~ 20 at. %) when Al-Mn becomes completely amorphous. This overall trend is consistent with 

observations by Frankel et al. [109], where pitting corrosion of Al-Mn was not much sensitive to 
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alloy concentration in the range of ~ 6 – 16 at. Mn%. A deviation from this general trend is 

apparent  in the dual phase region from the results by Moffat et al. [118]. However, this deviation 

is not surprising given the fact that Moffat et al. deposited Al-Mn at an elevated temperature of ~ 

150 
o
C which promote large chemical inhomogeneity between the fcc and amorphous phase. 

They noted that the composition of the selectively dissolved fcc phase is ~ 1 at.% Mn, very close 

to the equilibrium solubility limit. All other data (including our results) in Fig. 3.13(b) were 

obtained from Al-Mn deposited at room temperature which favors the formation of the 

compositionally homogenous dual phase microstructure. This chemical homogeneity was also 

confirmed by Ruan et al. [133] using atom probe tomography (APT). They found that Mn solute 

atoms distributed homogenously in the Al matrix with no significant clustering or ordering at the 

grain boundaries or in the amorphous phase, for either pure crystalline or dual phase Al-Mn. 

Taken together, in chemically homogenous Al-Mn solid solutions, pitting potential is seen to 

increase monotonically with alloying concentration regardless of the microstructure and phase of 

the alloy.  

3.3.5 Exposed Surface Morphology 

Fig. 3.14 shows SEM examination of the exposed alloys (one sample each) for any 

significant surface features after the 0.01 M NaCl immersion. Pure Al (A0) clearly showed 

through- thickness circular “pits” ~120 µm in diameter after 24 hrs of immersion; this 

observation is consistent with the direct visual observation of local corrosion (Fig. 3.9) and the 

indication of an anodic current surge immediately after exceeding the freely corroding potential 

(Fig. 3.6). Up to 108 hrs of exposure the surface of both alloys A5 and A11, while showing some 

alteration compared with the as-deposited state (Fig. 3.1) did not however reveal any marked 

localized attack. In contrast, a network of conspicuous grooves developed on alloy A20, as 
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shown in Fig. 3.14(d). Al and Mn EDS maps of the corroded surface (Fig. 3.14(d) insets) were 

featureless, so the grooves did not seem to be associated with any local compositional 

inhomogeneity. To reveal the depth of the grooves, a cross-section of the sample was prepared 

by focused ion beam (FIB) milling (Fig 3.15). Edge rounding and overhanging milling debris 

introduce some uncertainty, but in general the grooves appeared to be in the order of ~100 nm or 

less in depth (the depth of the grooves was measured by tilting the sample by 40°).  

Besides the grooves, a large population of circular pit-like features  ~ 100 nm in diameter 

was observed as well (white arrows, Fig. 3.15), resembling those observed in electrodeposited 

amorphous Al-Mn (with 21 at.% and 26 at.% Mn). Closer examination indicated that these 

features had a tendency to be connected with the groove network as illustrated by the red arrows 

in box 2, Fig. 3.15. The features may be vestigial traces of metastable pits; Meng et al. [134] 

demonstrated that the possibility of forming small metastable pits was higher for Al with smaller 

grain sizes. This grain size dependency is generally consistent with our observation that 

micrometer-scale stable pits are only observed in pure Al, while these apparent metastable pits 

were observed on our amorphous Al-Mn alloy.  

It is of interest to compare with the SEM evidence the amount of metal dissolution 

estimated from the EIS apparent corrosion rate test results. From the nominal corrosion rates in 

Fig. 3.12(a) alloys A11 and A12 would have had experienced after 108 hours, if the wastage was 

uniform, a deposited layer thickness loss in the order of ~ 200 nm, or about 20% of the initial 

film thickness. As indicated earlier, the interpretation of the EIS data is based only on working 

assumptions so only a rough estimate of material loss can be expected. Nevertheless the 

estimated value is consistent with the SEM indication of the initial film having been still present 

after 108 hours in both alloys. The EIS estimate also suggests that if in the case of the A20 alloy 
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the comparatively shallow grooves should be mostly irregularities in an advancing, relatively 

generalized front of metal wastage; otherwise the grooves would have needed to be much deeper 

to account for the metal loss estimate. Resolution of this issue merits consideration in subsequent 

investigations. For alloy A5 the metal loss estimate is about one order of magnitude less than for 

its two counterparts, fully consistent with the deposit still being in place and the absence of any 

other microscopic evidence of strong surface alteration. In all Al-Mn alloy cases the relatively 

sustained value of the passive film thickness indicated by the EIS data suggests that it was being 

globally regenerated while any metal wastage was taking place.  

3.4 Summary of Findings 

Al and Al-Mn thin films with up to 20.5 at.% Mn were grown by PVD on Si substrates to 

evaluate the influence of Mn on microstructure formation as well as their short-term and long-

term corrosion behavior. At low Mn concentration (5.2 at.%), Mn and Al form a supersaturated 

face-centered cubic solid solution with an average grain size of 15 nm. At an intermediate Mn 

concentration (11.5 at.%), a chemically homogenous dual-phase microstructure was formed 

consisting of fcc and amorphous Al-Mn. Further increasing alloy concentration to 20.5 at.% Mn 

leads to the formation of a complete amorphous Al-Mn with reduced surface roughness.      

For the microstructures examined here Mn was found to be highly effective in improving 

the corrosion resistance of Al. The pitting potential increased monotonically with the alloying 

concentration and was insensitive to the microstructure as long as chemical homogeneity was 

attained. The alloys containing fully nanocrystalline (5.2 at.%Mn) and fully amorphous (20.5 

at%Mn) microstructure exhibited better corrosion resistance than those containing dual phase 

(11.5 at%Mn). Finally, the amorphous Al-Mn was found to exhibit the highest corrosion 

resistance at short exposure time in chloride solution while the nanocrystalline counterpart was 
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more stable over long exposure time up to 108 hrs. Post-corrosion surface characterization 

revealed a network of surface grooves and circular pits formation on the amorphous Al-Mn after 

108 hrs.  

As a last note, the enhanced corrosion resistance and decreased pitting susceptibility of 

Al by alloying with Mn is similar to that observed in other Al-TM (TM=Ta, Mo, Cu, W, etc.) 

systems. A possible contribution to the enhanced pitting resistance by alloying with Mn is that 

Mn alters the pit growth kinetics [109]. Since Mn
2+

 has a lower hydrolysis constant than Al
3+

, 

thus a higher dissolution rate is required for Al-Mn to maintain the pH necessary for pit growth 

than pure Al. Finally, while the current study focused on Al-Mn thin films deposited on Si 

substrate by PVD, this material system can be easily electrodeposited in much thicker coatings 

(at a deposition rate of ~ 10 – 20 µm/hr [116, 135]) to protect various metal substrates such as Al 

alloys, steel, and Mg alloys.   
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Table 3.1 Summary of composition and microstructure results of as-deposited Al and Al-Mn 

alloys. 

Alloy 

ID 

Mn concentration Lattice constant TEM grain size 
Phase 

(at.%) (Å) (nm) 

A0 0 4.047 42 nanocrystalline 

A5 5.2 4.036 15 nanocrystalline 

A11 11.5 4.035 12 nanocrystalline + amorphous 

A20 20.5 - - amorphous 

 

Table 3.2 Electrochemical parameters from PD tests of Al and Al-Mn alloys in 0.6 M NaCl. 

Values shown as average (range). 

Alloy 

ID 
βa βc Nominal icorr Eoc 

Nominal Corrosion 

Rate Epit 

(V/decade) (V/decade) (A/cm²) X10
-7

 (mV) (µm/year) (mV) 

A0 - 0.75 (0.17) 8.3 (3.0)
 
 

-730 (105) 9.1 (3.3) -640 (12) 

A5 0.23 (0.17) 0.23 (0.10) 0.9 (0.3) -450 (64) 1.0 (0.4) -276 (16) 

A11 0.67 (0.16)  0.52 (0.25) 4.3 (3.2) -810 (110) 4.7 (3.5) -206 (15)  

A20 0.35 (0.05) 0.31 (0.26) 0.8 (0.4)
 
 -564 (62) 0.9 (0.5) -110 (54) 

 

Table 3.3 Electrochemical parameters from PD tests of Al and Al-Mn alloys in 0.01 M NaCl. 

Values shown as average (range). 

Alloy 

ID 
βa βc Nominal icorr Eoc 

Nominal Corrosion 

Rate Epit 

(V/decade) (V/decade) (A/cm²) X10
-7

 (mV) (µm/year) (mV) 

A0 - 0.28 (0.29) 1.90 (0.50)
 
 

-487 (9) 2.1 (0.5) -419 (38) 

A5 0.28 (0.15) 0.21 (0.09) 1.05 (0.08) -349 (93) 1.1 (0.2) - 

A11 0.49 (0.31)  0.30 (0.11) 1.18 (0.30) -503 (106) 1.3 (0.3) -  

A20 0.39  (0.26) 0.24 (0.08) 0.66 (0.58)
 
 -466 (172) 0.7 (0.6) - 



www.manaraa.com

 

52 

 

 

Figure 3.1 Surface SEM images of as-deposited (a) Al, (b) Al-5.2at% Mn, (c) Al-11.5at% Mn, 

and (d) Al-20.5at% Mn. 

 

 

 

Figure 3.2 XRD line scans of as-deposited Al and Al-Mn alloys. 
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Figure 3.3 Bright field TEM images and selected area diffraction (SAD) patterns (insets) of as-

deposited (a) Al, (b) Al-5.2at% Mn, (c) Al-11.5at% Mn, and (d) Al-20.5at% Mn. 

 

 

Figure 3.4 Typical potentiodynamic polarization curves of Al and Al-Mn alloys after 1 hour 

immersion in 0.6 M NaCl solution. 
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Figure 3.5 Electrochemical parameters (a) Epit, (b) Ezero current, (c) Eoc, and (d) Nominal 

corrosion rate of Al and Al-Mn alloys obtained from potentiodynamic polarization tests after 1 

hour immersion in 0.6 M NaCl solution. 

 

 
Figure 3.6 Typical potentiodynamic polarization curves of Al and Al-Mn alloys after 1 hour 

immersion in 0.01 M NaCl solution. 
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Figure 3.7 Electrochemical parameters (a) Epit, (b) Ezero current, (c) Eoc, and (d) nominal 

corrosion rate of Al and Al-Mn alloys obtained from potentiodynamic polarization tests after 1 

hour immersion in 0.01 M NaCl solution. Arrows denote tests were current surge otherwise 

indicative of pitting were not observed during anodic polarization. 

 

Figure 3.8 Long term evolution of Eoc of Al and Al-Mn alloys immersed in 0.01 M NaCl 

solution. Al was removed at 24 hrs; all other alloys were exposed up to 108 hrs. The error bars 

represent the range of data. 
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Figure 3.9 Photo of corrosion surfaces of Al (left) and Al-20.5 at.% Mn (right) after immersion 

in 0.01 M NaCl solution. A diffusive light source was used during photography to minimize 

surface reflection. 

 

 
Figure 3.10 Typical Nyquist representation of EIS measurement (scattered data) and model fit 

(solid lines) of Al and Al-Mn alloys after 3 to 108 hrs immersion in 0.01 M NaCl solution at 

open circuit potential and 10 mHz minimum data collecting frequency. 
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Figure 3.11 Equivalent circuit model used to fit the EIS spectra in Fig.3.10. 

 

 

 
Figure 3.12 The evolution of magnitudes derived from EIS tests  (a) nominal corrosion rate, (b) 

Y0, (c) n1, and (d) nominal passive film thickness as a function of immersion time in 0.01 M 

NaCl solution. For plot clarity; 0.5, 1, 1.5 and 2 hrs data offset in the time axis was applied to 

A0, A5, A11 and A20 respectively. The error bars represent the range of data. 
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Figure 3.13 (a) Summary of nominal corrosion rate as a function of Mn concentration from PD 

and EIS tests in 0.01 and 0.6 M NaCl after 1–108 hr immersion. (b) Pitting potential as a 

function of Mn concentration from the current work and Moffat et al. [21], Refass et al. [26], and 

Zhang et al. [119]. *Solid diamond in (a) represent EIS taken after 108 hr of immersion for all 

alloys except for pure Al, which is measured at 24 hrs. Red, green, and blue symbols in (b) 

represent crystalline, dual phase, and amorphous microstructure respectively.  

 

 
Figure 3.14 SEM micrographs of (a) Al after immersion in 0.01 M NaCl solution for 24 hrs, (b) 

Al-5.2 at.%Mn, (c) Al-11.5 at% Mn, and (d) Al-20.5at.%Mn after immersion in 0.01 M NaCl 

solution for 108 hrs. Insets in (d) are the post-corrosion EDS maps of image (d). 
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Figure 3.15 Cross-section SEM micrographs of sample A20 after immersion in 0.01 M NaCl 

solution for 108 hrs. Bottom left inset shows the enlarged area of box 1. 
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CHAPTER 4: THE EFFECTS OF MN ADDITION ON THE TRIBOCORROSION 

RESISTANCE OF AL-MN ALLOYS 

 

4.1 Introduction 

The increasing demand for materials suitable for complex service conditions such as in 

biomedical implants, hydraulic systems, nuclear power plants, marine and offshore industries 

etc. requires the design of new engineering materials resistant to both wear damage and 

corrosion degradation [96]. Tribocorrosion, a material degradation process caused by the 

combined effect of wear, corrosion, and their synergy, is most prominent for passive metals such 

as aluminum (Al) and its alloys [95, 98], which spontaneously form an amorphous 

semiconducting oxide film (passive film) when in contact with oxygen or water due to their high 

negative free energy of formation [136]. This passive film, sometimes only a few atomic layers 

thick, acts as a critical protective barrier against corrosion [95, 136]. When mechanical wear 

takes place during corrosion, the passive film can be locally destroyed at the contacting 

asperities, with the ensuing depassivation leading to rapid localized corrosion and early 

component failure [97, 137]. Thus a better understanding of the tribocorrosion response of Al 

alloys is required to extend the durability of these technologically important metals in complex 

service conditions.  

Tribocorrosion resistance of passive metals not only depends on material properties (e.g. 

microstructure, strength, work-hardening ability), but also on environment (e.g. pH, humidity, 

oxygen concentration) and testing conditions (e.g. applied potential, load, and sliding speed) 
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[138]. In addition, the problem is further complicated by the fact that the chemical and 

mechanical attacks are not independent of each other, but often act synergistically to cause 

accelerated failure [96, 97]. This synergy is often related to various events such as the localized 

deterioration of the passive film [139], wear debris acting as a third body between the contacting 

surfaces [140], and material transfer to the counter body due to plastic deformation [141].   

This work focuses on studying the alloying effect on the tribocorrosion resistance of Al 

alloy. Owing to the formation of protective passive film in neutral (pH 4-9) solutions  [142], Al 

is a good candidate for replacing toxic cadmium coatings, and is widely used for corrosion 

protection of steel [4], magnesium alloys [6], and NdFeB magnets [8] etc. Unfortunately pure Al 

is highly susceptible to wear due to its low hardness, thus greatly limit the durability and lifetime 

of such coatings. Alloying is an effective way to improve materials’ wear resistance by 

increasing the hardness per Archard’s law (i.e. wear rate is inversely related to hardness) [143]. 

In addition to hardness increment, proper alloying additions can significantly lower the grain 

boundary energy and stabilize ultrafine microstructures in the tribolayer, thus suppressing 

unfavorable stress-assisted grain growth during wear [144]. While most commercial Al alloys 

are precipitation-hardened to impart good strength and wear resistance, none of them have very 

good resistance against localized corrosion. The presence of precipitation and secondary particles 

strengthens the material but, at the same time, enhances corrosion by catalyzing oxygen 

reduction, increasing the corrosion potential, and localizing the electrochemical activity due to 

chemical inhomogeneity from the Al matrix [142]. Fig. 4.1 shows the corrosion and wear rate of 

wrought Al alloys (1xxx, 5xxx, and 6xxx), Al based bulk metallic glass (Al-BMG), and Al based 

high entropy alloys (Al-HEA) [145-161]. It should be noted here that Al-BMG and Al-HEA are 

expensive and difficult to fabricate. Recent studies showed that appropriate alloying additions 
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can increase the pitting potential of Al, provided that the alloying element is retained in solid 

solution [44, 162-164]. For example, age-hardened 2000 series Al alloys (with Cu as the major 

alloying element) exhibit poor corrosion resistance [142], but Kim et al. observed an 

ennoblement of pitting potential with increasing Cu content in Al-Cu solid solutions [162, 163]. 

Similarly, Al-based high entropy alloys such as AlxCo1.5CrFeNi1.5Tiy, which form a 

supersaturated solid solution, exhibit remarkable wear and corrosion resistance [165-167]. 

Current research in tribocorrosion response of Al alloys is very limited in scope. 

Abundant literature exists pertaining to the possible alloying effects on wear and corrosion 

resistance, but few attempts have been made to combine knowledge based on these two 

separated fields towards a better understanding of tribocorrosion. Even though there is no unified 

theory at the moment, the evidence indicates an exciting opportunity to alloy Al to optimize both 

wear and corrosion resistance. Fig. 4.2 summarizes alloying effects on hardness, pitting potential 

and corrosion current density of Al-TM (transition metal) reported so far [9, 34, 44, 105-108, 

111, 116, 168]. It can be seen that higher alloying content improves hardness, hence is likely to 

enhance wear resistance, although the optimum alloy concentration is not known a priori due to 

complicated dynamic microstructure evolution (e.g. dislocation accumulation due to sustained 

plastic deformation vs. stress-assisted grain growth and dynamic recovery) in the tribolayer 

[144]. On the other hand, alloying may affect corrosion resistance of Al in different ways 

depending on the specific alloying elements, as reviewed by Szklarska-Smialowska [37]. Small 

quantities of Sn, In, Hg, Ga, and Zn are detrimental to Al corrosion, as they reduce the passive 

potential region and shift the corrosion and pitting potentials in the negative direction [169]. 

Thus these TMs lead to high anodic current density and uniform active surface corrosion. Other 

TMs such as Cu, Mo, Mn, W, Nb, Cr, Ta, V, and Zr improve corrosion resistance and decrease 
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pitting susceptibility of Al by increasing the overpotential for anodic dissolution and decreasing 

metastable pit initiation and growth rates [162]. Furthermore, as shown in Fig. 4.2(b-c), the 

pitting potential of Al-TM generally increases with alloy concentration although the corrosion 

current remain scattered.    

The above discussion suggests a great opportunity of combating tribocorrosion by 

alloying Al with appropriate TMs in solid solution. This work combines tribological, 

electrochemical methods and finite element modeling to evaluate the fundamental deformation 

and degradation mechanism during tribocorrosion of aluminum-manganese (Al-Mn) solid 

solutions. The corrosion behavior of Al-Mn has been studied extensively previously [34, 109, 

118, 170], but the tribocorrosion resistance of this system has not yet been reported before. Al-

Mn alloys were prepared by magnetron sputtering. The high effective quench rate during 

physical vapor deposition allows the generation of high levels of supersaturation of both 

interstitial and low-miscibility substitutional alloying elements, which is essential in promoting 

chemically homogenous nanocrystalline or glassy phase formation far beyond the equilibrium 

solubility limit [116]. The alloying element (Mn) was selected based on the following criteria: 1) 

excellent microstructure stability due to high grain boundary segregation enthalpy of Mn in Al 

[171, 172], 2) high ionic potential of MnxOy (e.g. 17.95 for Mn2O7 and 15.19 for MnO3), 

indicating good oxide film lubricity [173], 3) similar atomic radii as Al (atomic radii ratio 

rMn/rAl= 1.12) that favors high non-equilibrium solubility, and 4) a wide range of equilibrium 

phases that could be formed in Al-Mn binary system [174], which allows tunable microstructure 

via alloying [116, 117]. Alloying elements that satisfy these criteria are expected to have the 

potential to increase tribocorrosion resistance of Al. This work focused on two compositions: ~ 

5.2 at.% and 20.5 at.% Mn, which showed high corrosion resistance for Al-Mn with up to ~ 20 
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at.% Mn [34]. Their difference in microstructure and hardness also allows the study of the 

composition-microstructure-tribocorrosion resistance relationship of Al-Mn. While focusing on a 

binary system here, it is believed that the generated understanding could also benefit the design 

of more complicated solid solution systems, such as Al based bulk metallic glass and high 

entropy alloys. 

4.2 Materials and Methods 

4.2.1 Materials Synthesis, Characterization, and Mechanical Testing 

Pure Al and Al-Mn thin films with 5.2 at.% and 20.5 at.% Mn were prepared by RF 

magnetron sputtering on (100) Si substrate, as listed in Table 4.1. To improve film-substrate 

adhesion, the native oxide film of Si was chemically etched using hydrofluoric acid prior to 

deposition. Sputtering was carried out inside a vacuum chamber (CRC-100 sputtering coater) at 

80 W input power under 5 mTorr argon atmosphere (99.99%). All metallic film thicknesses were 

kept at ~ 1.2 µm, as measured using a Dektak D150 Profiler. The as-sputtered films were 

characterized using grazing incidence X-ray diffraction (GIXRD, PANalytical X’Pert) with 

monochromatized Cu Kα (1.5404 Å) radiation, at 40 kV and 40 mA. The sample surface 

morphology and chemical composition before and after tribocorrosion tests were characterized 

using scanning electron microscopy (SEM, Hitachi SU-70) and energy-dispersive X-ray 

spectroscopy (EDS, EDAX-Phoenix). Transmission electron microscopy (TEM) analysis 

including bright-field (BF), dark-field (DF) imaging, and selected area diffraction (SAD) were 

performed using Tecani F20 TEM. TEM samples were prepared by directly sputtering Al and 

Al-Mn (~150 nm) on continuous carbon film TEM grids. Post-tribocorrosion cross-sectional 

samples were prepared from areas inside the wear-track using focused ion beam microscope 

(FIB, Quanta 200 3D Dual Beam). Nanoindentation tests were performed using a triboindenter 
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(Hysitron, Ti900) with a diamond Berkovich tip (~125 nm radius). All indentations were carried 

out under a trapezoidal loading profile with 3 mN maximum load, 0.05 N/s loading/unloading 

rate, and 5 s holding time. The penetration depth was kept below ~ 10% of total film thickness to 

eliminate the substrate effect. The hardness was obtained following Oliver–Pharr method [175]. 

The reported value of hardness is the average of at least 20 measurements. 

4.2.2 Electrochemical and Tribocorrosion Tests 

A protective stop-off lacquer was applied to the sample surface to expose an effective 

area of ~1 cm² for the electrochemical tests and ~ 1.8 cm² for the tribocorrosion tests. The 

electrochemical measurements were conducted in a typical three electrode configuration at 

ambient temperature in naturally aerated stagnant 0.6 M NaCl aqueous solution (pH ≈ 6.4) using 

a Gamry Reference 600® potentiostat. The as-deposited samples, mixed metal oxide coated 

titanium mesh, and a commercial silver-silver chloride electrode (1 M KCl internal solution) 

served as the working, counter, and reference electrode respectively. Potentiodynamic 

polarization (PD) measurements were conducted after 1 hr of immersion in the electrolyte 

allowing for the stability of the open circuit potential (EOC). The scan rate was 0.167 mV/s, 

starting at a potential ~150 mV cathodic to EOC and terminated when a rapid increase in the 

anodic current density took place reaching 10 µA·cm
-2

. To examine the behavior of the passive 

film, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (MS) analysis were 

conducted following potentiostatic (PS) anodic polarization. EIS tests were conducted at EOC in 

the frequency range of 100 kHz to 10 mHz, 5 points per decade, and 10 mVrms sinusoidal 

potential excitation. The obtained data was then fitted using Gamry E-chem software. The PS 

analysis was conducted for 60 min with a sample period of 10 Hz at a fixed potential of 200 mV 

vs. EOC within the passive region to produce a compact and dense passive film. MS tests were 
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conducted from 0 to 300 mV vs. EOC in the anodic region at 1 kHz frequency, amplitude of 10 

mVrms, and potential sweeping rate of 10 mV/s. 

Tribocorrosion tests were carried out in a reciprocating ball-on-plate mode with alumina 

ball (Al2O3, ø4 mm) as the counter piece using a universal mechanical testing (UMT) apparatus 

with a custom-made tribocorrosion cell, as shown in Fig. 4.3. Each test was carried out at 5 mm 

stroke length, 5 mm/s sliding velocity, under 0.5 N normal load (corresponds to initial mean 

Hertzian contact pressure of 0.47 GPa) at various potentials (EOC, anodic and cathodic potentials) 

following the hereafter sequence; EOC stabilization for 20 min, application of a specified 

potential for 20 min, application of reciprocating load for 5 min, re-passivation at the same 

potential for 5 min. The anodic potential (200 mV above Eoc) was selected within the passive 

region below the pitting potentials and the cathodic potential (350 mV below Eoc) was chosen to 

avoid hydrogen evolution reaction during sliding, which might lead to embrittlement of the 

samples [176]. Pure Al was not tested in the anodic regime due to its active anodic dissolution. A 

new alumina ball was used for each test to minimize contamination. After the tribocorrosion 

tests, wear track dimensions were measured using a Dektak D150 profilometer from three 

different locations along the wear track for each sample. The wear track cross-sectional area (i.e. 

wear track width times sample height loss) was then calculated using the trapezoidal numerical 

integration method. The total material loss rate (total volume loss/sliding distance) was obtained 

by multiplying the cross-sectional area by the wear track length and then divided by the total 

sliding distance. All electrochemical and tribocorrosion test results reported hereafter correspond 

to the average from at least three separate samples at each test condition. 
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4.3 Results and Discussion 

4.3.1 Microstructure and Mechanical Properties 

Table 4.1 summarizes the composition, microstructure and mechanical properties of all 

as-deposited samples. The average oxygen concentration measured for all alloys was 0.62 ± 0.17 

at.% and was assumed to be negligible here. Fig. 4.4 shows the GIXRD line scans of all samples. 

Sample A5 exhibited a single fcc phase, similar to that of pure Al, indicating the formation of 

supersaturated solid solution of Al-Mn, well exceeding the equilibrium solubility limit of Mn in 

Al (typically < 1 at. % at low temperatures) [177]. The observed peak shift towards higher 2θ 

angles for A5 compared to pure Al, indicated the reduction of lattice constant from 4.047 and 

4.036 Å, suggesting that Mn, which has a Goldschmidt radius ~ 11% smaller than Al, is 

substitutionally incorporated into the Al lattice. Similar behavior has also been reported by Ruan 

and Schuh for electrodeposited Al-Mn up to 15.8 at.% Mn [116]. The line scans of A20 showed 

no evidence of crystalline diffraction patterns, where the broad hump located at 2θ ≈ 42° 

confirmed that this alloy was amorphous. 

SEM images in Fig. 4.5 show the surface morphologies of the as-deposited films. It can 

be seen that pure Al and A5 exhibited faceted angular structure associated with the formation of 

crystalline phase, where each angular structure often corresponds to an individual grain [46]. 

Further increasing Mn concentration to 20.5 at.%, the surface morphology of amorphous alloy 

A20 exhibited compound round nodules, similar to that reported in thin films with ultrafine 

grains and/or high amounts of amorphous phase [123]. Insets in Fig. 4.5(d and g) are the EDS 

maps of Mn element of A5 and A20 respectively. It was found that Mn is homogeneously 

distributed throughout the entire sample tested. Fig. 4.5(b, e, and h) show BF TEM images of Al 

and Al-Mn alloys. The average grain size of pure Al and A5 was 42 ± 11.5 and 15 ± 6.2 nm 
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respectively, measured using the line-intercept method, while A20 showed no evidence of short 

range order. The SAD patterns of pure Al and A5 in Fig. 4.5 exhibited single fcc phase, indicated 

by the discrete diffraction rings, whereas A20 exhibited halo ring confirming the amorphous 

nature of this alloy. 

The hardness of pure Al (0.67± 0.18 GPa) was increased to 1.58 ± 0.13 GPa and 5.41± 

0.15 GPa for A5 and A20, respectively. This behavior is similar to that reported in PVD 

sputtered [170] and electrodeposited [116, 123] Al-Mn alloys. The increase in hardness could be 

related to solid solution strengthening, structure refinement, and the increase of average bond 

strength with increasing Mn concentration, as shown recently by Wang et al. via first-principles 

calculations [178]. The H/E ratio, which is often related to materials’ wear resistance [179], is 

0.020 and 0.056 for A5 and A20 respectively, as compared to 0.009 for pure Al. This increase in 

H/E indicates an enhanced wear resistance and coating durability via Mn alloying, as confirmed 

later in section 4.3.3.      

4.3.2 Corrosion Behavior 

Prior to tribocorrosion study, effects of Mn on the corrosion behavior of Al were 

evaluated using PD tests. The typical PD curves of all samples after 1 hr immersion in 0.6 M 

NaCl solution are shown in Fig. 4.6. Pure Al showed immediate active dissolution upon entering 

the anodic current regime, while both A5 and A20 showed well-defined passive regions, 

followed by a rapid increase in current density at the onset of pitting potentials (Epit), i.e. the 

potential at which stable pits are initiated [109]. The amorphous alloy A20 exhibited the highest 

Epit due to the high Mn content, similar to that reported elsewhere [118, 170]. At Eoc, A5 and 

A20 exhibited a reduction in corrosion current density (icorr) and an anodic shift of the crossover 

potentials for zero current (Ezero current) compared to pure Al, indicating the passive behavior of 
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Al-Mn alloys. The evolution of Eoc and the electrochemical parameters obtained from PD 

measurements are listed in Table 4.2, where the nominal corrosion rates in µm/year was obtained 

by converting the icorr using Faraday’s conversion (1 µA.cm
-2

 ≈ 10.9 µm/y) assuming uniform 

corrosion with the formation of Al
3+

. From the above results it can be seen that Mn addition 

enhanced corrosion resistance and decreased pitting susceptibility of Al, similar to that reported 

in other Al-TM (TM = Ta, Mo, Cu, W, etc.) systems. It is believed such improvement is due to 

the fact that Mn alters the pit growth kinetics; since Mn
2+

 has a lower hydrolysis constant than 

Al
3+

, thus a higher dissolution rate is required for Al-Mn to maintain the pH necessary for pit 

growth than pure Al [109]. 

Alloying additions often affect corrosion resistance by modifying the passive film 

properties. To evaluate the effect of Mn concentration on passive film protectiveness of Al, 

potentiostatic (PS) anodic polarization tests were carried out. Fig. 4.7 shows the evolution of 

current density as a function of time for A5 and A20 at 200 mV above EOC. In PS experiments, 

the current density (i) could be represented as [180]: 

 𝑖 = 𝐴𝑡−𝑘, (4.1) 

where t is the time, k is the slope of the curve in the double logarithmic i-t plot, and A is a 

constant that depends on the applied potential and concentration of the electrolyte. The value of k 

is considered as an indication of the compactness of the passive film, where k = 0 indicates 

active corrosion, k = -0.5 indicates formation of porous and diffusion controlled passive film, 

and k = -1 indicates the formation of protective and compact passive film. From Fig. 4.7 it can be 

seen that both alloys showed a decrease in the current density as time proceeded, suggesting the 

continuous growth of the passive film throughout the entire time of anodic polarization. In 

addition, A20 exhibited more negative slopes (-0.79 and -0.96) compared to A5 (-0.39 and -

0.49), indicating the formation of denser and more protective passive film at higher Mn%. 
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To evaluate the corrosion resistance of the polarized Al-Mn, EIS measurements were 

conducted after the PS test. The Nyquist representation of the results (Fig. 4.8) shows a single 

capacitive semicircle, confirming the presence of protective passive film for both alloys. in 

addition, the diameter of the capacitive semicircles increases with Mn addition, indicating an 

increase in the corrosion resistance at higher Mn%. The experimental results were fitted using an 

equivalent circuit model, as shown in Fig. 4.8 inset, where RS represents the ohmic solution 

resistance, CPE1 (constant phase element) represents the somewhat nearly-ideal capacitive 

behavior of the passive film [8]. That component, in combination with the charge transfer 

resistance R1 which represents the impedance associated with the Faradaic reactions on the 

interface [105], accounts for the time constant of the high frequency semicircle. R1 may be 

considered as being representative of a conductive path through imperfections of the passive film 

that may reflect breakdown ranging from incipient (largest values of R1) through more advanced 

(smaller values) paths. R1 is in series with the components of the time constant at low frequency 

CPE2 and R2 which correspond to the double layer capacitor at the metal surface. The summation 

of R1 and R2 could be considered as the overall impedance and represent the polarization 

resistance (RP) of the system [181]. 

The impedance of the CPE is represented by the following equation [182]: 

 𝑍𝐶𝑃𝐸 = 𝑌𝑜
−1(𝑗𝜔)−𝑛, (4.2) 

where Yo is a constant that represents the interfacial properties, j is an imaginary unit, ω is 

angular frequency, and n is a real number between (0 and 1) that represents the heterogeneity of 

the surface. The modeled curves using this proposed equivalent analog circuit are plotted as solid 

lines in Fig. 4.8. 
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The nominal thickness of the passive film is estimated as; 

 𝑑 = 𝜀𝜀𝑜𝐴/𝐶, (4.3) 

where ε is the dielectric constant of the passive film (10 for aluminum oxide [129]), εo is the 

permittivity of vacuum (8.85x10-14 F˖cm
-1

), A is the exposed surface area (~1 cm
2
) and C is the 

capacitance evaluated from CPE1. The equivalent circuit fitting parameters are shown in Fig. 4.9. 

It can be seen that for all fitting parameters (R1, Y0, and n), A20 is higher than A5, indicating the 

formation of a more homogenous passive film with higher polarization resistance. In addition, 

the passive film thickness of A20 is ~ 1.2 nm, much higher than that of A5 (~ 0.6 nm).   

Passive films on most metals and alloys are semiconducting, albeit often highly defective. 

The formation and breakdown of passive film strongly depends on the semiconducting nature of 

the passive film, which can be evaluated using Mott-Schottky (MS) analysis. During MS test, the 

electronic properties of the passive film could be evaluated using equations 4.4 and 4.5 for n-

type and p-type semiconductor behavior, respectively [119, 183-186]. 

 
1

𝐶2
=

2

𝜀𝜀0𝑒𝑁𝑑
(𝐸 − 𝐸𝑓𝑏 −

𝐾𝑇

𝑒
) (4.4) 

 
1

𝐶2
=

−2

𝜀𝜀0𝑒𝑁𝑎
(𝐸 − 𝐸𝑓𝑏 −

𝐾𝑇

𝑒
) (4.5) 

where C is the capacitance, ε is the dielectric constant of the passive film (10 for Al2O3 [129]), εo 

is the permittivity of vacuum (8.85x10
-14

 Fcm
-1

), Nd and Na are the donor and acceptor densities 

respectively, E is the applied potential, Efb is the flat band potential, K is Boltzmann constant 

(1.38x10
-23

 JK
-1

), T is the absolute temperature, and e is the elementary charge (1.602x10
-19

 C).   

The MS curves for A5 and A20 in 0.6 M NaCl solution are shown in Fig. 4.10. The 

positive slope indicates an n-type semiconductor behavior for both alloys [187]. The donor 

densities (slope of the fitting straight line) and flat band potential (intersection of the straight line 

with the potential axis) are shown in Fig. 4.10. For an n-type semiconductor, the donors are 
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usually positive point defects such as oxygen vacancies or cation interstitials [184]. By 

increasing Mn concentration, the donor density is decreased from 2.66x10
17

 cm
-3

 for A5 to 

5.63x10
13

 cm
-3

 for A20. Moreover, the Efb was shifted towards more negative values, -320 mV 

and -650 mV for A5 and A20 respectively. The more positive Efb of A5 results from the 

adsorption of oxygen into the passive film as a result of the oxygen reduction cathodic reaction 

[188]. The decreased carrier densities of amorphous compared to crystalline alloy was similar to 

that reported elsewhere [119, 189]. The enhanced corrosion resistance of A20 could be explained 

by the point defect model [190], where the low concentration of cation vacancies retards the 

breakdown of the passive film when the Cl
-
 are incorporated in the anion cites [37]. Taken all the 

results together, in chloride containing solutions, higher Mn concentration favors the formation 

of a thicker, more compact and protective passive film on the surface that significantly enhances 

the pitting resistance and lowers the corrosion rate of Al-Mn. 

4.3.3 Tribocorrosion Behavior 

Fig. 4.11 shows typical evolution of EOC during tribocorrosion tests for all samples 

subjected to 0.5 N load in 0.6 M NaCl aqueous solution. It can be seen that once the normal load 

was applied, a shift of EOC towards more negative values was observed in all samples. This 

negative shift of potential could be related to the deterioration of the passive film and the 

exposure of newly depassivated areas having lower equilibrium potential compared to the rest 

passive areas [176, 191-193]. Once the load was removed, EOC shifted back to more positive 

values towards its original state, indicating the recovery (repassivation) of the passive film. The 

amorphous alloy A20 exhibited the lowest negative shift (-20 mV vs. EOC) and the highest 

recovery rate of EOC compared to A5 (-250 mV EOC) and pure Al (-400 mV EOC). During sliding, 

there is a competition between passive film removal and repassivation until a at steady-state 
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tribolayer forms in the worn area. The negligible negative shift of EOC for A20 thus suggests that 

the depassivation and repassivation rates were in equilibrium for the amorphous alloy [194].    

To gain better understanding of the depassivation-repassivation kinetics, a galvanic 

model proposed by Vieira et.al [191] was used to simulate the potential evolution during sliding. 

The cathodic potential (EC) can be calculated as 

 𝐸𝑐 = 𝐸𝑐𝑜𝑟𝑟 + 𝑎𝑐 − 𝑏𝑐 log 𝑖𝑎 −𝑏𝑐log[(
1

𝐴𝑜𝑤𝑡
) (

𝐿2𝑅𝐶𝑤𝑡

0.0833
)
0.333

], (4.6) 

 

where Ecorr is the corrosion potential estimated from PD tests, ac and bc are the Tafel constants 

obtained from the linear regression of the cathodic part of PD curves, ia is the current density 

required to repassivate the worn areas, Aowt is the area outside the wear track (estimated as the 

sample surface area exposed to the corrosive environment), L is the wear track length, R is the 

radius of the alumina ball, Cw is a constant obtained by dividing the wear track volume by the 

sliding duration, and t is the sliding time. The model simulation results for pure Al and A5 are 

shown in Fig. 4.12. The EC evolution of A20 did not fit this model due to its unique behavior as 

discussed earlier. The fitted ia for A5 (0.9 ± 0.36 µA/cm2) is more than 10 times lower than that 

of pure Al (13 ± 4.6 µA/cm2), indicating that less current density is required to repassivate the 

worn surface of A5. Given the similar depassivation rate imposed by mechanical wear, these 

results indicate a much faster repassivation rate of A5. This is not surprising given the fact that 

pure Al is in active corrosion mode at OCP as shown earlier by the PD tests (Fig. 4.6).     

The applied potential has often been found to significantly affect tribocorrosion 

resistance by accelerating the total material loss at anodic potentials [195, 196]. In this study, the 

tribocorrosion behavior was evaluated at three potentials: EOC, anodic (200 mV above EOC) and 

cathodic (350 mV below EOC) potential. The results are summarized in Fig. 4.13. The total 

material loss rate (i.e. volume loss normalized by sliding distance) was found to be lowest at the 
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cathodic potential where the material removal was only caused by mechanical wear, and highest 

at the anodic potential due to the contribution of both corrosion and wear. This behavior is 

similar to that reported for heat treated Al alloy [191], 316L stainless steel [196] and tungsten 

[197] during tribocorrosion. Overall A20 exhibited the lowest material loss compared to A5 and 

pure Al at all applied potentials, which could be related to its high hardness and enhanced 

electrochemical properties, as discussed in sections 3.1 and 3.2. Fig. 13(b) shows the evolution 

of coefficient of friction (COF) at various potentials. For pure Al and A5, COF was found to be 

almost insensitive to the applied potential while for A20, the anodic shift of applied potential led 

to a decrease of COF.   

SEM images in Fig. 14 show the surface morphology of wear tracks after tribocorrosion 

tests at various applied potentials. Cross-sectional SEM images (Fig. 14 insets) confirm that all 

wear track depths were less than the total film thickness and no film delamination was observed. 

At all potentials studied here, the wear track is characterized by scratches and grooves, indicating 

extensive abrasive wear. At a given potential, the wear track width decreases with increasing Mn 

content, indicating improved wear resistance at higher Mn%. At the anodic potential, no pit was 

observed for either A5 or A20. This is likely due to the high depassivation rate at the testing 

speed (5 mm/s) that leads to active corrosion of the whole wear track. EDS maps of the wear 

tracks after tribocorrosion at the anodic potential are shown in Fig. 15. High oxygen content can 

be seen on the whole wear track of A5, most likely from trapped wear debris with high oxygen 

content. The fact that the oxygen distribution is patchy on A20 is consistent with its narrow and 

‘clean’ wear track morphology, indicating milder wear compared to A5.       

Passive metals often suffer from high wear-corrosion synergy, as discussed in the 

introduction. The wear-corrosion synergy (S) can be estimated as [176, 198] 
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 S = T −W0 − C0 (4.7) 

where T is the total material loss measured at EOC, W0 is the material loss due to pure mechanical 

wear measured at the cathodic potential, and C0 is the material loss due to pure corrosion 

estimated from PD tests [139, 199]. To be consistent with unit, all the terms in eqn. (7) was 

represented in mm/year. The synergy factor (F) is defined as [200]: 

 F = 
T

(T−S)
 (4.8) 

A high F value thus indicates high synergy between wear and corrosion. The results are shown in 

Fig. 16. Interestingly, even though A20 exhibits lower T, W0, and C0, its wear-corrosion synergy 

is higher than A5. In other words, the combined attack of wear and corrosion is more detrimental 

to A20. In addition, it can be seen that at the testing conditions studied here, the total material 

loss is dominated by mechanical wear while corrosion is negligible. This is in agreement with the 

criteria proposed by Stack et.al, which take in consideration the ratio of chemical to mechanical 

wear (C0 / W0 ) [201-203]. For C0 / W0 ≤ 0.1, wear is the dominating mechanism; for 0.1 < C0 / 

W0 ≤10, both wear and corrosion contribute significantly to material degradation; and for C0 / W0 

>10, corrosion is the dominating mechanism. In this work, C0 / W0 is 2.33X10
-5

 and 6.36X10
-5

 

for A5 and A20, respectively, well below 0.1. 

The origin of wear-corrosion synergy often comes from two terms: corrosion-accelerated 

wear and wear-accelerated corrosion. For corrosion-accelerated wear, the excess material loss at 

OCP and anodic potential compared to the cathodic potential indicates that corrosion 

significantly accelerated wear of Al-Mn, most likely by trapping abrasive wear debris with high 

Al2O3 content. Wear debris particles generated at the presence of passive film are likely to 

contain higher oxygen content compared to those from wear tests without corrosion. Indeed, 

EDS analysis at the anodic potential shows a high oxygen concentration on the wear track of 
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both samples (Fig. 15). Depending on the lubricity, these debris can act either as abrasive 

particles or solid lubricant. According to Erdemir’s crystal chemical model [173], the lubricity of 

oxide is related to its ionic potential φ = Z/r, where Z and r is the charge and radius of the cation 

respectively. Oxides with high ionic potential φ > 7 (such as V2O5, MoO3) are soft and 

lubricious, while oxides with low ionic potential φ < 7 (such as TiO2, Fe2O3) are strong and 

difficult to shear. The ionic potential of Al2O3 is 4.4; thus, it is considered strong and abrasive 

and will lead to accelerated wear. It should also be noted that while manganese oxides such as 

Mn2O7 and MnO3 are lubricous, X-ray photoelectron spectroscopy study showed that the passive 

film of Al-Mn was mainly composed of AlO(OH) and Mn was selectively dissolved in the outer 

part of the passive film [119]. Thus their effect on surface friction and wear can be neglected 

here. 

In addition to corrosion-accelerated wear, another origin of wear-corrosion synergy is 

wear-accelerated corrosion, which can be measured by recording the current evolution under 

imposed passive potential. Typically at the onset of rubbing, the wear track depassivates, leading 

to an increase in the current flow through the metal/electrolyte interface in order to sustain the 

imposed passive potential. As long as depassivation prevails during the test (I.e. the 

depassivation rate is much higher than repassivation rate), the current remains at an elevated 

level until the end of the test, when the current restores its original value due to subsequent 

repassivation of the worn area. The wear accelerated corrosion can then be quantified by 

calculating the total charge transferred due to this excess current flow. The evolution of this 

current for A5 and A20 at the anodic potential is shown in Fig. 17(a). Before the initiation of 

sliding, both samples were in their passive states and the current is less than 1 µA. Unlike A5, 

which exhibit a sharp increase in current at the onset of rubbing, A20 exhibits a low current for 
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the first ~ 50 sec before reaching steady state. It is likely that the high hardness of A20 results in 

a smaller wear track during the initial running-in period, which can be repassivated quickly. 

During sliding, the current increase is higher in A5 than A20, indicating accelerated corrosion 

due to the deterioration of the passive film is more significant for the former [139, 204, 205]. 

Once the load was removed, the galvanic current shifted back towards its original state indicating 

the recovery of the passive film, similar to that reported in other passive alloys [206].     

To quantify the wear accelerated corrosion, the contribution of electrochemical material 

loss (Vchem) resulted from metal oxidation under anodic applied potential could be calculated 

by Faraday’s law as [191, 207, 208] 

 Vchem =
𝑄𝑀

𝑛𝐹𝜌
 (4.7) 

where Q is the electrical charge (calculated by multiplying the difference between the average 

anodic current during and before sliding by the time), M is the molecular weight of Al (26.98 

g/mole), n is the oxidation valence (3 for Al), F is Faraday’s constant (96,500 C/mole) and ρ is 

the density (≈ 2.7 g/cm
3
). The electrochemical material loss is equal to that required to 

repassivate the worn area (hence rebuild the oxide film) by metal oxidation[207]. The total 

material loss at the anodic potential is then represented by the sum of the electrochemical 

(Vchem) and mechanical material loss (Vmech), as shown in Fig. 17(b). It can be seen that A20 

exhibited less contribution of Vchem (8.3X10
-11

 mm
3
) compared to A5 (1.9X10

-10
 mm

3
), 

indicating less metal oxidation was required for repassivation at higher Mn%. 

4.4 Summary and Conclusion 

This work expanded the available research on wear and corrosion to the tribocorrosion 

behavior of Al-Mn alloys. Al-Mn as processed here formed chemically homogenous 

supersaturated solid solutions. Increasing Mn concentration led to the formation of 
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nanocrystalline (5.2 at.% Mn) and fully amorphous (20.5 at.% Mn) microstructures. Mn was 

found to be highly effective in improving the wear, corrosion, and tribocorrosion resistance of 

Al. Mn addition increased the hardness of Al by solid solution strengthening and structure 

refinement. Such hardness increment resulted in improved wear and tribocorrosion resistance. At 

the same time, Mn addition enhanced the protectiveness of passive film; thicker and denser 

passive film with lower defect density was formed at higher Mn concentration. The total material 

loss was found to increase with applied potential. At cathodic potentials, mechanical wear 

dominates tribocorrosion, and the total material loss is mainly governed by the mechanical 

properties of the material. At open circuit and anodic potentials, mechanical wear led to local 

depassivation of the wear track, with the ensuring active corrosion resulting in accelerated 

material loss. Finally, the Al-Mn system studied here is self-repairing; upon the removal of 

mechanical load, the depassivated area quickly repassivates, with faster repassivation kinetics at 

higher Mn content.  
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Table 4.1 Summary of microstructure and mechanical properties of as-deposited Al and Al-Mn 

thin films. Lattice constant (a) was calculated from GIXRD results. Grain size (d) was measured 

from BF and DF TEM images using line-intercept method. Hardness (H) and elastic modulus (E) 

were calculated from nanoindentation tests.  

Sample 

ID 
Mn %(at.%) a (Å) d (nm) H (GPa) E (GPa) H/E Phase 

A0 0 4.047 42 ± 11.5 0.67 ± 0.18 70.13 ± 5.16 0.009 nanocrystalline 

A5 5.2 ± 0.1 4.036 15 ± 6.2 1.58 ± 0.13 77.65 ± 3.19 0.020 nanocrystalline 

A20 20.5 ± 0.4 - - 5.41 ± 0.15 97.54 ± 0.15 0.056 amorphous 

 

 

Table 4.2 Electrochemical parameters of Al and Al-Mn alloys obtained from PD tests in 0.6 M 

NaCl aqueous solution. The values of nominal corrosion rates were reported in µm/year as 

commonly adopted in the literature for thin films. Values are shown as Average (Range) 

Sample 

ID βa βc Eoc Epit Nominal icorr 

Nominal Corrosion 

Rate (µm/year) 

A0 - 0.75 (0.17) -730 (105) -640 (12) 8.3 (3.0)
 

 9.1 (3.3) 

A5 0.23 (0.17) 0.23 (0.10) -450 (64) -276 (16) 0.9 (0.3) 1.0 (0.4) 

A20 0.35 (0.05) 0.31 (0.26) -564 (62) -110 (54) 0.8 (0.4)
 
 0.9 (0.5) 
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Figure 4.1 Corrosion rate vs. wear rate of wrought, BMG, and HEA Al alloys [145-161]. 

 

 

 

Figure 4.2 Summary of (a) hardness, (b) pitting potential, and (c) corrosion current density as a 

function of transition metal (TM) concentration in Al-TM systems [145-161] . 
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Figure 4.3 Schematic illustration (left) and photo (right) of tribocorrosion set-up used in the 

current study. 

 

 

 

Figure 4.4 GIXRD line scans of as-deposited Al and Al-Mn alloys. 
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Figure 4.5 (a),(d),(g) Surface SEM images, (b),(e),(h) BF TEM images, and (c),(f),(i) the 

corresponding SAD patterns of as-deposited samples. Insets in (b) and (c) are the EDS maps 

(scale bar is 5 µm) of as-deposited A5 and A20, respectively. 

 

 

Figure 4.6 Typical potentiodynamic polarization curves of Al and Al-Mn alloys after 1 hour 

immersion in 0.6 M NaCl solution. 
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Figure 4.7 Double-log plots of current–time of the amorphous and crystalline Al-Mn alloys 

during anodic potentiostatic polarization at a constant potential of 200 mV vs. Eoc for 3,600 s in 

0.6 M NaCl aqueous solution. 

 

 

 

 
Figure 4.8 Typical Nyquist representation of EIS measurement (scattered data) and model fit 

(solid lines) of the amorphous and crystalline Al-Mn alloys measured at open circuit potential, 

10 mHz minimum frequency at data collecting frequency of 5 points per decade 
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Figure 4.9 Equivalent circuit parameters (a) R, (b) Y0, (c) n, and (d) RP and passive film 

thickness (d) of the amorphous (A20) and crystalline (A5) Al-Mn alloys in 0.6 M NaCl solution. 

 

 

Figure 4.10 Mott–Schottky plots of passive films formed on the amorphous and crystalline Al-

Mn alloys after anodic potentiostatic polarization in 0.6 M NaCl aqueous solutions with a 

measurement frequency of 1 kHz. 
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Figure 4.11 Evolution of corrosion potential before, during and after tribocorrosion tests at open 

circuit potential in 0.6 M NaCl. Inset shows data for A20 plotted on a smaller potential scale for 

better visualization. 

 

 

Figure 4.12 Experimental measurements (red curves) and model simulation (black curves) of 

potential evolution during tribocorrosion tests for (a) Al and (b) A5. 
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Figure 4.13 Summary of (a) the total material loss, and (b) COF of Al and Al-Mn alloys at 

various applied potentials. 

 

 

 

Figure 4.14 SEM images of the wear track formed on Al and Al-Mn alloys in 0.6 M NaCl at 

different applied potentials. 
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Figure 4.15 SEM image and the corresponding EDS element maps (O, Mn and Al) of (a) A5 and 

(b) A20 after tribocorrosion at the anodic potential (200 mV above Eoc). 

 

 

Figure 4.16 Synergetic contributions of the mechanical wear and corrosion of the amorphous and 

crystalline Al-Mn alloys in 0.6 M NaCl. The total material loss (T) was measured at the open 

circuit potential. 
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Figure 4.17 Current evolution and (b) chemical and mechanical wear of A5 and A20 during 

tribocorrosion under anodic applied potential. 
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CHAPTER 5: INFLUENCE OF CHEMICAL HETEROGENEITY ON THE 

CORROSION RESISTANCE OF BIODEGRADABLE WE-43 MG ALLOY 

 

5.1 Introduction 

Biodegradable WE43 magnesium (Mg) alloy containing major alloying elements of 

yttrium (Y, 4.1wt%), neodymium (Nd, 2.1wt%), and zirconium (Zr, 0.56wt%) has received great 

interest lately for potential applications as cardiovascular stents [21, 209] and bone implants 

[210, 211]. WE43 Mg alloys exhibit good cell adhesion in physiological environment and can 

safely degrade in the human body; hence no post operation is required once the damaged tissue is 

healed, minimizing procedure cost and risks [212, 213]. In contrast to conventional medical 

metals such as titanium, cobalt-chromium, and stainless steel, the mechanical properties of Mg 

are close to that of human bones [214, 215], thus minimizing the stress shield effect [216] and 

increasing implant stability [214]. Moreover, Mg is an essential element for human metabolic 

processes and has been shown to enhance bone growth when used as implants [82, 217, 218].     

The high degradation rate of Mg alloys in physiological environments [219, 220] and 

subsequent loss of structural integrity and extensive hydrogen evolution to balance the anodic 

dissolution [221, 222], limits the wide applications of these materials. For example, FDA 

determined that implants have to retain 80% of their initial mechanical properties during the first 

12 weeks after implantation, and the total absorption should be achieved in around 2-3 years. 

When tested in vivo, Witte et al. [223] found that WE43 Mg alloy completely degrade within 18 

weeks. Corrosion of Mg occurs as per the following half-cell reactions [53, 54]. 
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 Mg→Mg
2+

+ 2e
- 
(anodic reaction), (5.1) 

 2H2O+2e
-
→H2+ 2OH

- 
(cathodic reaction). (5.2) 

The electrons released from the dissolution of Mg (anodic reaction) are consumed by the 

cathodic reaction to generate H2 gas [55]. The Mg
2+

 and OH
-
 ions formed by the anodic and 

cathodic reactions, respectively, will then combine to form Mg(OH)2 film as [53];  

 Mg
2+

+2OH
-
→ Mg(OH)2. (5.3) 

The selection of proper alloying elements with specific composition is a common 

approach to enhance the mechanical properties and corrosion resistance of Mg [16]. The high 

solubility of Y in Mg, similar electrochemical potential, same crystal structure, and similar 

atomic radii promotes the effective strengthening of Mg by the formation of precipitates or 

secondary particles [16, 75]. The addition of Y with other rare earth elements was also found to 

enhance the creep resistance of Mg alloy due to the formation of Y rich phases [16]. Nd was 

found to be biocompatible [76, 77] and effective in enhancing the corrosion resistance of Mg 

alloys by reducing micro-galvanic effects due to the presence of intermetallic compounds [78-

80]. Nd also enhances the mechanical properties of Mg by forming intermetallic phases at the 

grain boundaries [17, 78, 81]. Zr addition increases the strength of Mg mainly by grain 

refinement [82]. Due to the limited solubility of Zr in Mg, the undissolved Zr particles act as 

selective nucleation cites during solidification. The corrosion resistance of Mg was found to be 

enhanced when the concentration of Zr is kept below 2% [16]. 

While alloying is a convenient method to enhance the mechanical properties of Mg, its 

effect on corrosion resistance is often complicated and detrimental. This is because the formation 

of precipitates and secondary phases due to alloy addition strengthens the material, but at the 

same time, often lead to undesired micro-galvanic coupling between the precipitates and α-Mg 
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matrix, which is considered the dominating corrosion mechanism of Mg alloys. Various 

strategies have been explored to enhance the corrosion resistance of Mg alloys, including 

designing new alloy compositions and microstructures [224-226], as well as applying various 

surface treatment methods such as ion implantation [210, 215, 227-230], electrodeposition [231, 

232], and physical vapor deposition (PVD) [233, 234] to modify or cover the surface of Mg. The 

new alloy design approach did not entirely resolve the issue of galvanic coupling between 

different secondary phases coexisting with α-Mg matrix in the alloy. In addition, new alloys with 

favorable in vivo degradation behavior are not necessarily associated with good biocompatibility, 

thus extensive time-consuming animal studies have to be performed (and positive outcome 

demonstrated) before they could be approved by FDA [235]. On the other hand, the surface 

modification approach enhances the corrosion resistance of the alloy by altering the chemical 

and/or physical properties of the surface [236-244]. For example, James et al. [229] plasma 

implanted WE43 alloy with both Zr and N and found enhanced corrosion resistance due to the 

formation of Zr and N rich surface layer. However, surface treatment such as plasma ion 

implantation is only effective in altering the properties of a very thin (50-150 nm) surface layer 

[210, 215, 229], hence offering very limited benefits for corrosion resistance improvement. In 

addition, there could be accelerated corrosion due to galvanic effects between coating and Mg 

substrate.  

Given the limitations noted above, the present work aims at evaluating the role of 

chemical heterogeneity on the microstructure-corrosion resistance relationship of WE43 Mg 

alloy. The approach presented here consists of keeping composition as in the regular commercial 

alloy, but modifying processing of the material via a deposition process to obtain a 

microstructure that is radically different from that of the conventionally prepared, cast material. 
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Samples from two metallurgical states will be investigated: cast and as-deposited. The cast 

samples contain extensive precipitates due to limited solubility of alloying elements in Mg, 

hence representing a microstructure with high level of chemical heterogeneity. The deposited 

samples, prepared using non-equilibrium processing technique (i.e. physical vapor deposition), 

contain supersatured solid solution of all elements hence representing a microstructure without 

chemical heterogeneity. Corrosion study, combined with in-situ image monitoring, and post-

corrosion microstructure characterization will be combined to study the roles of chemical 

heterogeneity on the corrosion mechanism of WE43 in simulated physiological environment.  

5.2 Materials and Methods 

5.2.1 Materials Synthesis and Characterization 

Cast WE43 Mg sheets (1 mm thickness) and sputtering targets with the same global 

composition of 4.1 wt.% Y, 2.1 wt.% Nd, 0.56 wt.% Zr, and balance Mg, were purchased from 

AEM Products. The cast sheets were cut into rectangles of (25x15) mm
2
 for the electrochemical 

tests. Prior to corrosion testing, the cast samples were mechanically polished using a series of 

SiC abrasive papers down to 2400 grit size, followed by 0.3 µm alumina polish suspension (Pace 

Technologies), rinsed with di-water, and air dried. The thin film samples were prepared by DC 

magnetron sputtering (CRC-100 sputter coater) on (100) Si wafers. Prior to sputtering, the Si 

wafers were chemically etched using hydrofluoric acid to remove the native oxide film. 

Sputtering was conducted inside a vacuum chamber (5 mTorr working pressure) with argon 

atmosphere at 100 A current for 3hr hours to achieve a nominal film thickness of ~ 570 nm. 

The cast and as-deposited thin films were studied by grazing incidence X-ray diffraction 

(GIXRD, X’Pert PANalytical), using Cu Kα (1.5404 Å) radiation at 40 kV and 40 mA. Data was 

collected over 2ϴ values of 20-80°, 0.015° step size, and 3.5 s per step. The obtained diffraction 
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patterns were then analyzed using X’Pert Highscore software. The surface morphology and 

composition of all samples were characterized using scanning electron microscopy (SEM, 

Hitachi SU-70) and calibrated energy-dispersive X-ray spectroscopy (EDS, EDAX-Phoenix). 

EDS analysis were carried out using acceleration voltage of 10 kV. Transmission electron 

microscopy (TEM) analysis of as-sputtered samples, including bright-field (BF), dark-field (DF) 

imaging, and selected area diffraction (SAD) were performed using (Tecani F20) TEM operated 

at 200 kV. TEM samples were prepared by directly sputtering the WE43 on continuous carbon 

film TEM grids for 15 min, which resulted in a sample thickness of ~150 nm. TEM grain size 

was estimated using line-intercept method. Cross-sections of samples after the electrochemical 

test were prepared by milling the sample surface using focused ion beam microscope (FIB, 

Quanta 200 3D Dual Beam) operated at 20 kV using Ga ions.  

5.2.2 Electrochemical Tests 

An effective area of 1 cm² of all samples was obtained by using Gamry PortHoleTM 

electrochemical sample mask for the electrochemical tests. All electrochemical measurements 

were performed at room temperature using a Gamry Reference 600® potentiostat with the 

conventional three electrode configuration in naturally aerated and stagnant blood bank buffered 

saline having a pH of 7.0-7.2 and the following ingredients concentration in g/L (NaCl: 8.5, 

Na2HPO4: 1.67, NaHPO4: 0.39). The sample, mixed metal oxide coated titanium mesh, and a 

commercial silver-silver chloride electrode (1 M KCl internal solution) were used as the 

working, counter, and reference electrode, respectively.  

Potentiodynamic polarization (PD) measurements were conducted in a single upward 

scan at constant scan rate of 1 mV/s, starting from cathodic potential (~ -150 mV to EOC) to 

anodic potential (~ +300 mV Vs. EOC). EIS tests were conducted after 15 min of immersion in 
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the electrolyte at EOC in the frequency range of 10 kHz to 100 mHz, 5 points per decade, and 10 

mVrms sinusoidal potential excitation. The obtained data was then fitted using Gamry E-chem 

software. The evolution of H2 gas was monitored for long exposure period (4 hrs) by simple 

immersion test. To ensure data reproducibility and accuracy, the results of minimum three 

samples are reported for each electrochemical test. 

5.3 Results and Discussion 

5.3.1 Microstructure 

Fig. 5.1 shows the surface morphology and the corresponding EDS element maps of cast 

WE43 alloy. The microstructure consists of a solid solution of α-Mg matrix and randomly 

distributed intermetallic precipitates with high Y, Nd, and Zr content [245], which formed during 

solidification due to limited solubility of the alloying elements in Mg. These precipitates have 

three different shapes; longitudinal, cuboidal, and spherical, as indicated in Fig. 5.1(a). The 

average length of the longitudinal precipitates is 20.6 ± 2.2 µm, while the average size of the 

cuboidal and the spherical particles is 3.3 ± 0.4 and 5.9 ± 0.4 µm respectively. EDS element 

maps in Fig. 5.1 (b-f) shows that the longitudinal and spherical precipitates are rich in Nd while 

the cuboidal particles are rich in both Y and Zr. Table 5.1 summarizes the compositions of these 

precipitates. It can be seen that indeed the longitudinal and spherical phases has a higher Nd 

concentration, while the cuboidal phase shower higher Y and Zr content than the α-Mg.  

The surface morphology of the as-deposited WE43 thin films (Fig. 5.2) exhibits dense 

faceted angular structures, which are often associated with the formation of nanocrystalline 

phase with columnar through thickness grains. EDS analysis in Table 5.1 shows that global 

composition of the as-deposited thin film is very close to that of the cast alloy. The EDS element 

maps (Fig. 5.2 b-f) shows that all alloying elements are homogeneously distributed within the α-
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Mg matrix, thus exceeding their equilibrium solubility in Mg [246, 247]. Fig. 5.3 shows the 

GIXRD line scans of the cast and as-deposited samples. The diffraction peaks of the cast alloy 

indicate the presence of Mg41Nd5 and Mg24Y5 precipitates in addition to α-Mg. While current 

XRD data base does not include results from Mg-Y-Zr alloy, it is likely that the XRD identified 

Mg24Y5 phase also contains Zr, as indicated by prior EDS results (Fig. 5.1 and Table 5.1). More 

work is planned in the future to quantify the structure and composition of these precipitates by 

detailed TEM study. Nevertheless these phases are consistent with those reported by others from 

the same alloy [248]. On the other hand, XRD result of the as-deposited WE43 exhibited only α-

Mg phase, where the diffraction peaks of the precipitates observed in the cast alloy no longer 

exist. This result suggests that the fast effective quenching rate during magnetron sputtering 

leads to the supersaturation of Y, Zr, and Nd in the α-Mg matrix [249, 250], hence eliminating 

chemical heterogeneity while maintaining the same global composition. It is also interesting to 

note that the as-deposited WE43 exhibited a high intensity (112̅0) peak and absence of (101̅0) 

and (101̅2) peaks, suggesting the presence of a strong (112̅0) fiber texture in the film thickness 

direction, similar to those reported in other PVD deposited Mg alloy thin films [251].   

Fig. 5.4 (a) and (b) show bright-field (BF) and dark-field (DF) TEM images of as-

deposited WE43 alloy. The average grain size was 46.6 ± 11.5 nm, measured using line-intercept 

method from multiple DF images. The SAD pattern (Fig. 5.4(c)) exhibited discrete diffraction 

rings, corresponding with a single hcp phase, indicating the formation of supersaturated solid 

solution [34], in agreement with the XRD results. 

5.3.2 Potentiodynamic Polarization Tests 

Fig. 5.5 shows the representative PD results of the cast and as-deposited WE43 Mg alloys 

after immersion in blood bank buffered saline for 20 min. The anodic branch of the PD curve 
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represents the anodic dissolution of Mg, while the cathodic branch represents the cathodic 

reaction of hydrogen evolution. The inset shows three separately repeated tests for each sample 

sets. It can be seen from Fig. 5.5 that the as-deposited alloy exhibits a shift of both the anodic 

and cathodic branches towards lower corrosion current densities (icorr), indicating a decrease in 

anodic and cathodic kinetics [54, 252]. In addition, the PD curves of both alloys show relatively 

low Tafel slopes, indicating low polarizability, similarly to those typically observed in Mg alloys 

[253]. The cast alloy exhibits no evidence of passivity, while the as-deposited alloy is believed to 

form a protective oxide film on the alloy surface, which fractured at the breakdown potential of -

1.4 VAg/AgCl. Beyond this potential, the oxide film can no longer protect the sample [215, 254]. 

The values of the crossover potentials for zero current (Ezero current) of both alloys scatter 

around -1.5 VAg/AgCl. These values are slightly higher than that reported for cast WE43 alloy in 

NaCl aqueous solutions (-1.9 to -1.8 VAg/AgCl), simulated body fluids (SBF) (-1.9 to -1.6 VAg/AgCl) 

and complete cell culture medium (cDMEM) (-1.7 to -1.6 VAg/AgCl) [210, 215, 216, 230, 255]. 

The EOC and the electrochemical parameters obtained from the PD tests for both samples are 

listed in Table 5.2. Due to the asymmetry of the anodic and cathodic branches of the PD curves, 

in this work the Ezero current and the nominal (icorr) were estimated by Tafel extrapolation of the 

cathodic region starting from a potential that is 50 mV cathodic to the EOC of the PD curves [31, 

230]. The icorr of the cast and as-deposited WE43 Mg alloys are 99.3 ± 17.0 µA/cm
2 

and 12.0 ± 

2.1 µA/cm
2
, respectively. It is interesting to note that the icorr values of as-deposited alloy 

reported here is remarkably lower than that of plasma ion implanted WE43 Mg alloy in SBF 

solution [215, 229, 230]. The corrosion rate in µm/year was estimated by Faradic conversion of 

the icorr (1 µA/cm
2
 corresponds to approx. 22.6 µm/year), considering uniform corrosion of Mg 

with the formation of Mg
2+

. It was found that the as-deposited WE43 exhibited ~ 8 fold 
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reduction in the nominal corrosion rate (272 ± 48 µm/year) compared to the cast alloy (2249 ± 

385 µm/year). Additional tests (Fig. 5.6(a)) of the cast alloy, which included a return scan at an 

apex potential of 300 mV vs. EOC showed a return loop, indicating the susceptibility of the alloy 

to localized corrosion. Cyclic cathodic polarization scans (Fig. 5.6(b)) show that no hysteresis 

existed between the forward and reverse curves, thus justifying the chosen scan rate of 1 mV/s 

during PD tests is appropriate for representing the corrosion kinetics of the alloys.   

5.3.3 Electrochemical Impedance Spectroscopy Study 

To further evaluate the corrosion mechanism of the cast and as-deposited WE43 Mg 

alloy, EIS measurements were conducted after EOC stabilization for 15 min in blood bank 

buffered saline. The Nyquist representation of the results (Fig. 5.7) for both alloys show two 

overlapping capacitive semicircles. The semicircles at high and low frequency attribute to the 

mass transport through the oxide/hydroxide layer and charge transfer, respectively. The Nyquist 

results indicated that both alloy exhibited similar corrosion mechanism, but the significantly 

larger capacitive loop of the as-deposited alloy compared to that of the cast alloy indicates the 

enhanced corrosion resistance [210, 230] achieved by reducing the chemical heterogeneity.   

The experimental data were fitted using the equivalent circuit model shown as inset in 

(Fig. 5.7). Constant phase elements (CPEs) were used instead of capacitors due to the depression 

of the Nyquist curve at low frequencies. Here, Rs represents the ohmic solution resistance, the 

constant phase elements CPE1 and CPE2 represent the capacitive behavior of the oxide/hydroxide 

layer and charge separation due to hydrogen evolution, respectively. The impedance of the CPE 

is represented as 

 ZCPE = Yo
−1(jω)−n, (5.4) 

where Yo is a constant, j = (-1)1/2, ω is the angular frequency and n is a real number between 0 

and 1. R1 and R2 are the resistance of the oxide/hydroxide layer and charge transfer resistance 
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due to hydrogen evolution reaction, respectively [256, 257]. The polarization resistance RP was 

estimated as RP = R1 + R2 [257]. As shown in Fig. 5.7, the fitted results closely matched the 

experimental behavior for much of the frequency range for both alloys. It was found that R1 for 

the as-deposited alloy (3821 ± 235 Ω) was significantly higher than that of the cast alloy (27 ± 12 

Ω), indicating the former has much larger resistance against the transportation of the corrosive 

media through the oxide/hydroxide film. Similarly, R2 for the as-deposited alloy (440 ± 160 Ω) is 

higher than that of the cast alloy (188 ± 76 Ω), confirming the enhanced resistance to Mg 

dissolution.   

The corrosion rate (icorr) from EIS tests was estimated from the RP using Stern-Geary 

equation [253, 258]: 

 icorr = B/RP, (5.5) 

where B is the apparent Stern-Geary coefficient with a value of 54 and 73 mV for the cast and 

as-deposited alloys respectively. These B values were obtained from Tafel extrapolation of the 

PD tests following the equation: 

 B =
𝛽𝑎.𝛽𝑐

2.3(𝛽𝑎+𝛽𝑐)
, (5.6) 

where βa and βc are the anodic and cathodic Tafel slopes, respectively. In this work the value of 

βa was estimated to be equal to βc for the cast alloy. It is also noted here, that the validity of 

corrosion rates estimated from Stern-Geary equation depends on the correct determination of the 

coefficient B and whether Mg dissolves directly to Mg
2+

 or through Mg
+
 intermediate [57, 253, 

259]. Through equations (5) and (6), It was found that the icorr for the as-deposited alloy (17 ± 0.3 

µA/cm
2
) is much lower than that of the cast alloy (257 ± 82 µA/cm

2
), in agreement with the PD 

tests.  

 



www.manaraa.com

 

99 

 

5.3.4 Immersion Test 

Finally, the corrosion behavior and H2 evolution of both alloys in blood bank buffered 

saline was examined using a high definition camera (1920 × 1080 pixels, 30 fps) at different time 

intervals up to 160 min, as shown in Fig. 5.8. It can be seen that during the entire immersion 

period, the cast alloy developed a much higher amount of hydrogen bubbles and sites of 

corrosion, compared to the as-deposited alloy. The difference in the amount of bubbles generated 

from the surface of both alloys during the simple immersion test could be related to their 

different cathodic kinetics. Such results supported those obtained from the PD test, where it was 

found that the cathodic kinetics was hindered by minimizing the chemical heterogeneity in the 

as-deposited alloy. The H2 bubbles observed at the edges of both samples are similar to that 

reported by Wu et al. [260] for AZ91D Mg alloy immersed in 0.1 M NaCl solution, and are 

believed to be not related to the corrosion behavior. It was noted that the as-deposited sample 

darkened within the first 5 min of immersion, revealing a color similar to the natural color of rare 

earth elements. Similar behavior was also reported by Wu et al. [69] for lanthanum (La) 

magnetron sputtered AZ91D Mg alloy. To understand the role of this darkened layer and its 

formation process, the evolution of Eoc were closely monitored for the first 1,000 sec of the 

immersion for both samples, as shown in Fig. 5.9. For the deposited sample, the Eoc increased 

significantly from about −1.67 V vs. Ag/AgCl up to about −1.52 V vs. Ag/AgCl in the first 

~150–200 s upon immersion. Such fast increase in Eoc is often associated with passivation of the 

surface and formation of a surface film [261]. Q-tip was frequently used to scrub the sample 

surface to introduce local disturbance on the surface film during the immersion. It can be seen 

that such disturbance has negligible effect on Eoc of the cast alloy. Interestingly, for the as-

deposited alloy, once the darkened film formed (after ~ 470 sec), such disturbance lead to a 
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sudden decrease of Eoc, followed by a gradual recovery once the Q-tip is removed, characteristic 

of a typical depassivation-repassivation behavior of passive metals [191]. Preliminary scanning 

Kelvin probe microscopy (SKPM) measurements (not shown here) suggest that the work 

function of the darkened surface is similar to that of the virgin surface of the as-deposited 

sample. Thus this surface darkening is believed to have no effect on the surface properties of the 

as-deposited sample. Detailed characterization of this layer, including the film thickness, 

composition, and semiconducting properties, is left for future work. 

Fig. 5.10 and 5.11 show the surface morphologies and EDS analysis of the cast and as-

deposited WE43 alloys after immersion in blood bank buffered saline for 4 hours. The surface 

morphology of the cast alloy shows thick corrosion product film with extensive dehydration 

cracks, similar to that reported for the same alloy in Ringer’s solution, cell culture and simulated 

body fluid [229, 230]. Chu and Marquis [261] showed that such films contain a bi-layered 

porous structure, with an outer porous amorphous Mg(OH)2 layer  on top of an inner MgO layer. 

According to the EDS maps (Fig. 5.10 (b-g)), the regions of corrosion film on the cast alloys 

were enriched in Zr and Y. This behavior could be related to the micro-galvanic coupling 

between the α-Mg and the precipitates. Although WE43 contains three different types of 

precipitates, the Zr-rich phases exhibit the highest Volta potential difference with respect to the 

α-Mg matrix compared to all other precipitates [261]. Hence during corrosion, the α-Mg will 

serve as the anode and the Zr-rich precipitates as effective local cathodes. The cathodic reaction 

then takes place according to Eq. (2),(3) around the Zr-rich phases. In contrast to the cast alloy, 

the surface of the deposited alloy was still smooth without noticeable corrosion product 

formation (Fig. 5.11). The EDS analysis (Fig. 5.11 (b-g)) confirmed that all the alloying 

elements remained in solution after corrosion. 
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To further examine the corrosion product formed on the cast alloy, cross-section of the 

corroded region was prepared by FIB milling (Fig. 5.12 (a, c)). Edge rounding and milling debris 

were minimized by selecting a minimum current (0.3 pA) during the last stages of the milling 

process. The cracks depth appeared to be ~1.6 µm, obtained by tilting the sample at 40° and 

applying tilt correction for the measurement. These cracks could serve as open channels that 

allow the corrosive environment to penetrate into the alloy interior for the corrosion reactions to 

continue. On the other hand, the as-deposited alloy exhibited dense columnar structure similar to 

that reported for other magnetron sputtered metallic thin films (Fig 5.12. (b, d)). After 4 hr 

immersion, the cross-section of the deposited alloy was still uniform in thickness and 

maintaining good adhesion with the substrate. These observations thus support the results 

obtained from the electrochemical tests, confirming that eliminating undesirable chemical 

heterogeneity of the alloy is an effective method to enhance the corrosion resistance of WE43 

Mg alloy by minimizing micro-galvanic corrosion.  

5.4 Summary and Conclusions 

The microstructure and corrosion behavior of deposited WE43 Mg alloy were compared 

with that of cast alloy having the same global composition. The as-deposited alloy formed a 

chemically homogeneous supersaturated solid solution with an average grain size of ~ 46 nm. 

Achieving chemical homogeneity was found to be highly effective in improving the corrosion 

resistance of WE43 by hindering the anodic and cathodic activities and minimizing undesirable 

micro-galvanic corrosion, resulting in ~ 8-fold reduction in corrosion rate. Post-corrosion surface 

characterizations revealed the corrosion products primarily formed above areas enriched in Zr 

and Y elements. The corrosion product of the cast alloy exhibited a network of dehydration 

cracks, through which the corrosive media could penetrate towards the interior of the sample. In 
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contrast, the as-deposited alloy managed to maintain the chemical homogeneity of the pre-

corrosion condition. Corrosion was found to proceed in a more uniform fashion in the deposited 

sample due to the formation of protective surface layer. Finally it should also be pointed out that 

while the as-deposited alloy was conveniently produced by PVD, it is however a surface 

technique and in its laboratory form not suitable for producing millimeter sized bulk samples. 

Nevertheless it is anticipated that the understanding generated here will provide critical design 

guidance for microstructure optimization in bulk biomedical products produced by other scalable 

non-equilibrium techniques such as semi-solid casting, rapid solidification, cold spray, 

electrodeposition, and powder metallurgy. 

 

Table 5.1 Summary of the global and precipitate compositions of cast and as-sputtered Mg-

WE43, measured by EDS analysis on polished sample surfaces.  

Samples Mg (wt.%) Y (wt.%) Nd (wt.%) Zr (wt.%) 

Cast WE43 (global) 93.1 ± 0.3  3.6 ± 0.5 2.4 ± 0.2 0.6 ± 0.2 

Longitudinal/Spherical 

phase 
82.4 ± 4.4 6.6 ± 3.4 7.2 ± 2.6 3.9 ± 0.9 

Cuboidal phase 69.1± 7 9.2 ± 1.9 3.5 ± 2.1 18.8 ± 4.2 

As-deposited WE43 

(global) 
93.09 ± 0.88 4.67 ± 0.6 1.79 ± 0.35 0.45 ± 0.19 

 

 

Table 5.2 Electrochemical parameters obtained from PD tests of cast and as-deposited WE43 

alloy. 

Samples 
βa 

(mV/decade) 

βc 

(mV/decade) 

Nominal 

icorr 

(µA/cm²) 

Eoc 

(mV) 

B 

(mV) 

Nominal 

corrosion rate 

(µm/year) 

Cast 35.3 ±17.2 250.3 ± 15.5 99.3 ± 17 -1510 ± 50 54 2249 ± 385 

As-

deposited 
326.2 ± 21.1 347.7 ± 49.9 12.0 ± 2.1 -1520 ± 50 73 272 ± 48 
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Figure 5.1 (a) SEM image and the corresponding EDS element map of (b) all elements, (c) Mg, 

(d) Y, (e) Zr, and (f) Nd, obtained from polished cast WE43 alloy. 
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Figure 5.2 (a) Surface SEM image and the corresponding EDS element map of (b) all elements, 

(c) Mg, (d) Y, (e) Zr, and (f) Nd, obtained from as-deposited WE43 alloy. 
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Figure 5.3 GIXRD of cast (red) and as-deposited (black) WE43 alloy. 

 

 

Figure 5.4 (a) Bright field (BF), (b) dark field (DF) TEM images, and (c) the corresponding SAD 

pattern of as-deposited WE43 thin film. 
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Figure 5.5 Tafel plots of cast and as-deposited WE43 alloy from PD tests after immersion in 

blood bank buffered saline for 20 min. Inset show PD results from three separate tests for each 

sample sets. 

 

 

Figure 5.6 (a) Cyclic PD curve, and (b) cyclic cathodic polarization curve of cast WE43 alloy. 
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Figure 5.7 Nyquist plots (scattered data) of cast and as-deposited WE43 alloy conducted after 

EOC stabilization for 15 min in blood bank buffered saline. The top right inset shows the 

equivalent circuit model used to fit the experimental measurements, as represent 

 

 

 
Figure 5.8 Photos taken during immersion tests of as-deposited and cast WE43 alloys up to 160 

min in blood bank buffered saline. 
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Figure 5.9 Evolution of EOC during immersion test in blood bank buffered saline. 

 

 
Figure 5.10 (a) Surface SEM image, and (b)-(g) the corresponding element maps of cast WE43 

after immersion test for 4 hours. Image (c) is the overlay image including all elements from 

images (b), and (d)-(g). 
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Figure 5.11 (a) Surface SEM image, and (b)-(g) the corresponding element maps of as-deposited 

WE43 after immersion test for 4 hours. Image (c) is the overlay image including all elements 

from images (b), and (d)-(g). 

 

 
Figure 5.12 Cross-sectional SEM images of (a), (c) cast, and (b), (d) as-deposited WE43 after 

immersion test for 4 hours. Images (c) and (d) are enlarged from the box area in (a) and (b) 

respectively. In image (d), the bottom dark area corresponds to the Si substrate. 
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CHAPTER 6: CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH 

 

6.1 Conclusions 

In this dissertation, the roles of alloy concentration and microstructure on the corrosion 

and tribocorrosion resistance of two light weight Al and Mg alloys, representing predominantly 

passive and active dissolution behaviors, respectively, were investigated. Chemically 

homogeneous super saturated solid solutions of Al-Mn were fabricated under vacuum by 

magnetron sputtering. Increasing Mn concentration led to the formation of nanocrystalline (5.2 

at.% Mn), dual phase (11.5 at.% Mn), and fully amorphous (20.5 at.% Mn) microstructures. The 

effect of alloy (Mn) concentration on the microstructure, surface morphology, hardness, 

corrosion, and tribocorrosion resistance was investigated. The pitting potential increased 

monotonically with increasing alloy concentration. Both, crystalline and amorphous alloys 

exhibited enhanced corrosion resistance compared to that of pure Al. The decrease in corrosion 

resistance observed for the dual phase alloy was ascribed to the micro-galvanic coupling between 

the two co-existent phases (crystalline and amorphous).  The amorphous alloy exhibited the best 

corrosion resistance during short exposure period, while during prolonged exposure duration up 

to 108 hrs, the crystalline alloy was more stable. It was found that Mn addition enhanced the 

corrosion resistance of Al by forming a thicker and more compact passive film with less defect 

density.  

Mn addition increased the hardness of Al by solid solution strengthening and structure 

refinement. Such hardness increment resulted in improved wear and tribocorrosion resistance. 
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The material response during tribocorrosion tests was controlled by the alloy hardness, quality of 

the passive film, and applied potential. Finally, the Al-Mn system studied here was found to be  

self-repairing; upon the removal of mechanical load, the depassivated area quickly repassivated, 

with faster repassivation kinetics at higher Mn content.  

The effect of chemical homogeneity on the corrosion resistance of as-cast and magnetron 

sputtered WE43 Mg alloy was studied in a simulated physiological environment. The formation 

of chemically homogeneous single phase supper saturated solid solution of Mg-Zr-RE enhanced 

the corrosion resistance, likely by minimizing the undesirable micro-galvanic corrosion. Post-

corrosion surface characterizations of the cast alloy revealed sites of severe corrosion enriched in 

Zr and Y elements. These sites exhibited a network of cracks (expected to result from 

dehydration), through which the corrosive medium could penetrate towards the interior of the 

sample. In contrast, the as-deposited alloy managed to maintain the chemical homogeneity of the 

pre-corrosion condition. Corrosion was found to proceed in a more uniform fashion in the 

deposited sample, apparently due to the formation of a protective surface layer.  

6.2 Future Work 

As discussed earlier, Mn was chosen as the alloying element for studying the effect of 

alloy concentration and microstructure on the corrosion and tribocorrosion resistance of binary 

Al alloys based on the following criteria: lubricity of the oxide film, grain boundary segregation 

enthalpy, and relative atomic radius compared to Al. It would be of great interest if other 

alloying elements are considered and their effects are compared to that of Mn. In addition to the 

selection criteria mentioned above, the H/E ratio, pitting potential and defect densities of the 

passive film should be considered. In tribocorrosion studies, the effects of tribological variables 

(normal load, sliding speed, alignment, and vibration) and electrochemical variables (applied 
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potential, ohmic resistance, electrolyte pH etc.) should be evaluated. Quantification of the 

repassivation rate and the studying of the exact origin of wear-corrosion synergy should be also 

considered. 

The effect of chemical heterogeneity on the corrosion resistance of WE43 alloy was 

investigated using samples from two different metallurgical structure, cast and magnetron 

sputtered.  This work can be extended by quantifying the effect of grain size and crystallographic 

texture on the corrosion resistance of WE43 alloy. It is also highly recommended to 

electrochemically test samples of commercially available biodegradable implants coated with the 

magnetron sputtered WE43 alloy. The effect of corrosive species such as Cl
-
 on coating stability 

and adhesion should be tested. The mechanical properties of both microstructures should be 

characterized by means of nano-indentation and compared to that of materials currently used. 

XPS analysis (composition, semiconducting properties, and thickness) of the passive film formed 

on the deposited alloy should be obtained. 
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APPENDIX A: FABRICATION AND DEFORMATION OF ALUMINUM-MANGANESE 

 

 MICROSANDWICH STRUCTURE 

 

A.1 Introduction 

Micro-architectured materials including microlattices and microsandwiches have 

emerged recently as promising structural and functional frameworks for small-scale multi-

functional devices [262-264]. Their open architecture not only leads to low areal density and 

high damage tolerance, but also provides channels for heat/fluid flow, which is critical to multi-

functional devices such as high-capacity batteries, insect-like robots, and micro-air vehicles 

[265-268]. A sandwich structure exhibits higher bending rigidity than lattices by effectively 

redistributing the mass to the outer surfaces (instead of the core), similar to natural cellular 

materials found in insects and plants [262, 269]. The stiff face sheets carry bending and in-plane 

stresses during deformation, while the low-density core bears transverse shear stresses [270]. 

Such superior property has led to extensive study on the structural design of sandwiches, mostly 

with core size above tens of millimeters. The damage tolerance of sandwiches is highly 

dependent on the density, strength, and geometry of the core [271]. It was found that the periodic 

sandwich core can be optimized to sustain loads at much lower relative densities than stochastic 

foams [272]. Further improvement of mechanical properties may also be achieved by hybridizing 

the core material [273]. 

Existing fabrication procedures for large-scale sandwich structures typically involve 

welding or adhesive bonding of the face sheets and the core. These techniques become 

challenging as core size decreases to the nano- or micro-meter scale. Recently, there have been 
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several successful attempts to create microlattice and microsandwich structures from polymers 

[263], ceramics [274], and metals [268]. Kolodziejska et al. [263] demonstrated the synthesis of 

an ultra-thin lightweight polymer micosandwich by using a self-propagating photopolymer 

waveguide. Meza et al. [274] developed energy-absorbing ceramic microlattices with high 

compression ductility by combing photon lithography, atomic layer deposition, focused ion beam 

microscopy, and oxygen plasma etching. Recently, the same group [268] combined the template 

fabrication procedure with aqueous electrodeposition (ED) to produce Cu octet microlattice. 

Despite these progresses, the fabrication processes reported above often are complicated (involve 

multiple steps) or limited to specific material type [263], a simple fabrication technique for a 

metallic microsandwich structure still is lacking. Here, a one-step ED procedure was reported to 

fabricate an Al-based microsandwich structure by using a commercial polycarbonate (PC) 

template and two anodes simultaneously. Mn is chosen to refine the microstructure and improve 

the strength of Al, as demonstrated in electrodeposited Al-Mn thin films by Ruan and Schuh 

[275, 276]. The presented approach offers an opportunity to create Al alloy structures with low 

density, open architecture, high specific strength, and damage tolerance, which may find 

potential applications as plasmonic pixels in color displays [277], anodes for Li ion batteries 

[278, 279], and energy adsorbers [280, 281] etc.  

A.2 Experimental Procedure 

Track-etched PC membranes (Cyclopre) with an average nominal pore diameter of 5 µm 

were sputtered (CRC sputter coater, 99.99% argon, 5mTorr) with a thin Cu layer of ~ 250 nm 

thickness on both sides prior to ED. The ED experiments were performed at room temperature 

using a three-electrode setup inside an Ar-filled glovebox (Mbraun Labstar, O2< 1 ppm, H2O<1 

ppm). Al wire (99.99%, Alfa Aesar) was used as the reference electrode. The Cu-coated PC 
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membrane (working electrode) was placed in the middle of two parallel Al anodes (99.99%, Alfa 

Aesar), allowing Al-Mn to be deposited from both ends of the pore, as illustrated in Fig. A.1. 

The ionic liquid electrolyte was made by mixing AlCl3 (anhydrous, 99.999%, Alfa Aesar) and 1-

ethyl-3-methyl-imidazolium chloride (EMIC, >98%, iolitec) in 2:1 molar ratio. As-received 

EMIC was dried under vacuum at 60 °C for at least 24 hours prior to mixing. The electrolyte was 

then purified using an Al plate under agitation until a vanish yellow color was achieved. MnCl2 

(98%, GFS Chemicals) was added to the electrolyte in different molarities and agitated for 24 

hrs. Galvanostatic electrodeposition was performed using Gamry Reference 600 

potentiostat/galvanostat at 10 mA/cm
2
 for 1 hr. Finally, free-standing microsandwiches were 

obtained by dissolving the PC membrane using dichloromethane.  

Cyclic voltammetry experiments were performed on tungsten wire (~ 1 mm diameter) 

working electrode at a scan rate of 20 mV/s. The deposited structures were characterized using 

X-ray diffraction (XRD, PANalytical X’Pert PRO), scanning electron microscopy (SEM, 

Hitachcai SU-70), and energy-dispersive X-ray spectroscopy (EDS, EDAX-Phoenix). Cross-

sections of the microsandwiches were obtained by ion milling using focused ion beam 

microscopy (FIB, FEI Quanta 200). Special care was taken to minimize Ga contamination by 

using reduced current density during the final milling steps. Nanoindentation of the deposits was 

performed using a triboindenter (Hysitron, Ti900) with a diamond Berkovich tip (~125 nm 

radius) at 7 mN maximum load, 1.4 mN/s loading/unloading rate, and 2 s holding time. Finally, 

to investigate the mechanical behavior of sandwich structures exposed to localized point loads, 

micro-indentation (UMT-2, CETR) tests were performed using an alumina ball (4 mm diameter) 

tip under a constant normal load (varied from 20 to 25 N). 
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A.3 Results and Discussion 

A.3.1 Cyclic Voltammogram 

Fig. A.2 shows the typical cyclic voltammograms recored at W electrodes in 66.7–33.3 

mol% AlCl3-EMIC electrolyte containing 0.05 and 0.25 M [Mn
2+

]. The scan started from 2 V 

vs. Al/Al
3+

 and was reversed at – 0.5 V vs. Al/Al
3+

. Mn is nobler than Al in an aqueous solution, 

but in acidic chloroaluminate electrolyte (with molar fraction of AlCl3 > 0.5), the deposition 

potential for Mn is slightly more negative than that for Al [282]. The forward scan in Fig. 2 is 

similar to that reported for pure Al [283, 284], showing no obvious reduction wave associated 

with [Mn
2+

]. This indicates that Mn co-deposited with Al at potentials is lower than ~  ̶ 0.1 V vs. 

Al/Al
3+

 in the ionic liquid with 0.05 M [Mn
2+

]. The overall reduction of Al-Mn occurred by the 

following reactions [285]: 

 Mn2+ + 2e− ↔ Mn (A.1) 

 4Al2Cl7
− + 3e− ↔ Al + 7AlCl4

− (A.2) 

In the reverse scan, Al-Mn dissolution occurred at potentials higher than ~ 0.3 V vs. 

Al/Al
3+

. Increasing [Mn
2+

] in the electrolyte shifted the reduction potential in the anodic 

direction and the dissolution potential in the cathodic direction. In addition, the current densities 

decreased by ~ 40% as [Mn
2+

] increased from 0.05 to 0.25 M. This is similar to that reported by 

Tsuda et al. [283], who found that the addition of [Mn
2+

] inhibits the nucleation of Al. EDS 

(EDAX-Phoenix) analysis showed that increasing [Mn
2+

] from 0.05 to 0.25 M increased the Mn 

concentration in the deposits from 9.0 ± 0.3 at.% to 26.2 ± 0.4 at.%. During co-deposition of Al 

and Mn, the alloy composition is mainly governed by the concentrations of the electroactive 

species Al2Cl7
− and Mn

2+
 [286]. [Al2Cl7

−] strongly depends on the acidity of the electrolyte. Under 

Lewis base conditions (molar fraction of AlCl3 < 0.5), [Al2Cl7
−] is close to zero (<10

-7
 M) [287]. 
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Thus, maintaining a Lewis acid electrolyte is necessary for the deposition of Al-Mn binary alloy. 

It also should be noted that this condition is not necessary for Al-Mn deposition in inorganic 

chloroaluminate electrolyte systems where the deposition can take place involving the discharge 

of AlCl
-4

 in a basic solution [288].  

A.3.2 Microstructure of Al-Mn Microsandwich 

Al-Mn microsandwiches were successfully electrodeposited from acidic AlCl3-EMIC-

MnCl2 electrolyte containg 0.05 M [Mn
2+

], following the procedure illustrated in Fig. A.1. 

Galvanostatic control was chosen to better control the size of the deposited structures. Fig. 

A.3.(a) shows the SEM image of the microsandwich with ~ 11 µm thick face sheets separated by 

27.6 ± 0.6 µm tall pillars, which resembles the ancient Temple of Athena Nike. Fig. A.3.(b) 

shows the cross-section of the microsandwich prepared by FIB, where Cu coating (light contrast) 

and Al-Mn pillar (dark contrast) can be seen clearly. Occasionally, porosity can be found in the 

center of the pillars, probably due to the development of high surface roughness after the 

extended deposition time.  

To evaluate the sandwich growth kinetics, selected ED was carried out for 3 and 10 min 

using one Al plate as an anode. The deposited structures were freestanding micro-tubes with 

various wall thicknesses. Typical SEM images of the micro-tubes are shown in Fig. A.3(c) and 

(d). The tubes were completely hollow, with an average height of 9.8 ± 0.9 µm. Increasing the 

deposition time from 3 to 10 min led to thickening of the tube wall from 670 ± 100 nm to 1.2 ± 

0.4 µm without affecting the tube length. The inset in Fig. A.3(d) shows a closeup of the tube 

after 10 min deposition. It can be seen that the deposition advanced in the radial direction of the 

pore, and the inner-tube surface roughness increased with deposition time. During ED, kinetic 

roughening often is observed following a power law <w> ∝ t
β
 [289, 290], where w represents the 
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surface width, i.e., the average edge length projected on the substrate, and t is the deposition 

time. The power exponent β typically varies from 0.2–0.5, depending on deposition parameters 

such as the current density and electrolyte concentration [289, 290]. Measurements of the inner-

tube surfaces indicate ~ 36% increase of the surface width as the deposition time increased from 

3 to 10 min, giving a power exponent β ≈ 0.25 in the present study. 

XRD results of the micro-tubes and microsandwiches are presented in Fig. A.4. At 0.05 

M [Mn
2+

], the XRD pattern of the micro-tubes and microsandwich exhibited a single set of fcc 

peaks (lattice constant ≈ 4.00 Å) in addition to Cu (111), indicating the formation of a 

supersaturated solid solution of Al-Mn. This Mn concentration (9.0 at.%) is significantly higher 

than the equilibrium solubility of Mn in Al at room temperature (~ 0.62 at.%) [121]. For the 

microsandwich, a pronounced <111> fiber texture developed along the pillar direction, similar to 

that observed in other fcc metallic nanowires [291]. At 0.25 M [Mn
2+

], the XRD pattern of the 

microsandwich indicated the formation of a complete amorphous phase (with possible local 

ordering [275]), as represented by the diffuse peak at 2θ ≈ 42°. These results indicate that Mn, 

which has a Goldschmidt radius ~ 11% smaller than Al, is substitutionally incorporated into the 

Al lattice. Further increasing alloy content frustrates the ordered structure and leads to the 

formation of amorphous phase.  

A.3.3 Mechanical Properties 

To evaluate the mechanical properties of the microsandwiches, nanohardness of Al-Mn 

was measured using Oliver–Pharr method on sandwich face sheets [175]. The maximum 

indentation for the crystalline (9 at.% Mn) and amorphous (26 at.% Mn) Al-Mn was ~250 and 

~200 nm, respectively.  The hardness of the crystalline and amorphous deposits is 2.59 ± 0.21 

GPa and 6.14 ± 0.35 GPa, respectively. These values are consistent with those reported in 
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monolithic Al-Mn thin films electrodeposited from the same electrolyte at similar deposition 

current density [275, 276]. Ruan and Schuh [275] showed that Mn is highly effective in refining 

the microstructure of Al; increasing Mn% up to ~ 13 at.% reduces the grain size of Al by more 

than three orders of magnitude. Thus the high hardness of Al-Mn is likely the combined effects 

of Hall-Petch and solid solution strengthening. Given the low density of Al alloys (ρAl-9Mn ≈ 3.12 

g/cm
3
 and ρAl-26Mn ≈ 3.94 g/cm

3
) and the open architecture (relative density ρ̅ = ρsandwich/

ρsolid = 0.48), the density of the microsandwiches is estimated to be ~ 1.50 g/cm
3
 and 1.89 

g/cm
3
 for the crystalline and amorphous structure, respectively. The estimated specific strength 

of the sandwiches are between 277 and 520 kN•m/kg, well in excess of Al alloys used in 

commercial Al foams [269]. The relative density of the deposit can be tailored by adjusting the 

geometry of the membrane (e.g. pore density, pore diameter, membrane thickness) or controlling 

the deposition time (to form hollow instead of solid cores). For commercial PC membrane with 

void volume ranges between 4 and 20%, a relative density in the range of ~ 20% - 50% can be 

potentially achieved using the current method.  

While sandwiches are efficient lightweight structures with high bending rigidity, they are 

notoriously sensitive to failure by the application of localized external loading [270]. To evaluate 

their resistance to quasi-static impact, the crystalline and amorphous microsandwiches (ca. 1×1 

cm
2
) were indented by a 4 mm diameter alumina ball under 20 to 25 N normal load. A top face 

crack started to develop in the crystalline microsandwich at loads larger than ~ 22 N. On the 

other hand, large-scale cracks were observed on the top face of the amorphous microsandwiches 

under all loads investigated. Fig. A.5(a)–(d) show typical SEM images of the surface of the 

microsandwiches indented at 21 and 22 N. The failure modes were similar to those reported for 

macroscale sandwich structures [270]. The crystalline microsandwich mainly failed by pillar 
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(core) compression (Fig. A.5(e)), with minimal deformation of the upper face (skin). The height 

of the deformed pillars beneath the indent was ~ 8.3 ± 0.5 µm, corresponding to a local 

compressive strain of ~ 70%. An arc-shaped crack was developed near the edge of the contact 

area under 22 N (Fig. A.5(c)), characteristic of ductile intergranular fracture. The failure mode of 

the amorphous microsandwich (FIG. A.5(b) and (d)) was mainly the brittle fracture and collapse 

of the upper face, whereas the pillars underneath retained their original shape (FIG. A.5(f)). 

Debonding between the top faces and the core was observed in both samples.  

During indentation of a sandwich structure, the core yield load (P1) can be estimated as 

[270]: 

 P1 = 1.52σcbt(
Ec
Ef

c

t
)1/4 (A.3) 

where the core yield strength (𝜎𝑐, listed in Table 1) is calculated from nanoindentation hardness 

assuming a Tabor factor of 3, the skin thickness t is 11 µm, sample width b is 1 mm, core 

thickness c is 27.6 µm, and the core to face elastic modulus ratio 
𝐸𝑐

𝐸𝑓
 ≈ 1. The load for the top skin 

fracture (P2) and the plastic zone size (2s, as defined in Fig. 3 in [270]) can be solved 

numerically from equations (2) and (3) [270]:  

 (
3λ

2σcb
) P2 =

2z3(sinh2z′ +sin2z′) + 3(sinh z′ cosh z′ − sin z′ cos z′)(2z2 − 1) − 6z

z2(sinh2z′ +sin2z′) + 2z(sinh z′ cosh z′ − sin z′ cos z′) − (cosh2z′+cos2z′)
 (A.4) 

and 

 
(
λ

σcb
) P2 =

λ2t2σf
3σc

+ z2 + 2zA + B

z + A
 

(A.5) 

where z = λs, z′ = λs′, λ = (
3𝐸𝑓

𝐸𝑐𝑐𝑡3
)1/4, A =

sinhz′ coshz′−sinz′ cos z′

sinh2z′+sin2z′
and B =

sinh2z′−sin2z′

sinh2z′+sin2z′
. The 

calculated results are listed in Table 1. For the crystalline microsandwich, the predicted skin 

fracture load is 23.4 N, very close to the crack initiation load measured experimentally (~ 22 N). 
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This load is also larger than the core yield load (18.2 N). Thus, extensive core compression 

occurred prior to surface crack formation. In addition, the predicted plastic zone size (300 µm) 

agrees well with the experimentally-measured fracture size (dashed arc in Fig. A.5(c)). For the 

amorphous microsandwich, the predicted core yield load (43.1 N) is much higher than the 

applied loads. Thus, no core compression was expected in this case. On the other hand, the brittle 

fracture of the top face, despite a high skin fracture load (55.6 N), is likely related to the near-

zero tensile ductility of amorphous metals, which lacks sufficient intrinsic micromechanisms to 

mitigate high stress concentrations at crack tips [292].  

To gain further understanding of the failure mechanism of the microsandwiches, finite 

element analysis (FEA) was performed using Ansys Workbench over an area of 70 × 70 µm
2
 

with pillars separated 10 µm apart. The dimensions of the microsandwich were taken from 

experimental measurements. Both Al-9 at.% Mn and Al-26 at.% Mn were assumed to be elastic-

perfectly plastic (due to the lack of reliable stress-strain data) with material properties listed in 

Table 1. The sandwiches were loaded at 0.81 N and subsequently unloaded to reproduce the 

experimentally-measured displacement. The FEA results are shown in Fig. A.6. Under the same 

load, the crystalline sandwiches were plastically deformed with large displacement (Fig. 6(a)), 

while the amorphous one experienced only elastic deformation (mainly on top face, as shown in 

Fig. A.6(b)). In both structures, the maximum equivalent stress and the critical shear strains 

always appear near the face-core interface, in agreement with the pillar delamination location 

observed experimentally. Finally, the absorption energy per unit volume of the crystalline 

microsandwich is estimated to be ~ 43.2 MJ/m
3
, much higher than that of conventional 

aluminum foams and new lattice structures under similar strain (e.g. ~ 1−4 MJ/m
3
 for ALPORAS 
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[281], ~ 12 MJ/m
3
 for aluminum honeycomb foam [133], and 1 - 20 MJ/m

3
 for stainless steel 

square and diamond lattice [133, 275]).  

A.4 Conclusions 

In summary, Al-Mn microsandwiches with nominal core pillar size of 5 μm were 

successfully electrodeposited using a PC template from acidic chloroaluminate electrolyte 

containing 0.05 and 0.25 M [Mn
2+

]. The crystallinity and mechanical properties of the deposits 

can be tuned by controlling [Mn
2+

] in the electrolyte. Microsandwiches were found to grow 

along the radial direction of the template pore with tunable wall thickness by the deposition time. 

Alloying with Mn significantly increased the strength and damage tolerance of the 

microsandwich. Given the flexibility and scalability of the ED process, the methods 

demonstrated here present an interesting future direction for designing ultra-lightweight energy 

adsorbers with open architecture, high strength, and damage resistance. 
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Table A.1 Summary of composition and properties of microsandwiches. Elastic constants were 

estimated from rule of mixture [143]. Plastic zone size, core yield and skin fracture loads were 

calculated from eqns. (A.3)-(A.5). 

Microsandwich 

composition 

Elastic 

modulus 

(GPa) 

Poisson’s 

ratio  

Yield 

strength 

(MPa) 

Plastic zone 

size (µm) 

Core yield 

load (N) 

Skin fracture 

load (N) 

Al-9 at.%Mn 81.1 0.34 863 300 18.2 23.4 

Al-26 at.%Mn 101.6 0.32 2,050 300 43.1 55.6 

 

 

 

 

 

 

Figure A.1 Schematic illustration of electrodeposition procedures for microsandwiches. 
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Figure A.2 Cyclic voltammograms recorded in AlCl3-EMIC electrolyte containing 0.05 and 0.25 

M [Mn
2+

]. 

 

 

 
 

Figure A.3 SEM images of (a)–(b) microsandwich, (c)–(d) micro-tubes deposited from acidic 

AlCl3-EMIC electrolyte containing 0.05 M [Mn
2+

]. 
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Figure A.4 XRD 2θ scans of micro-tubes and microsandwiches 

 

 

 

 

Figure A.5 SEM images of (a)-(b) surface and (c)-(d) cross-section of Al-9 at.% Mn and Al-26 

at.% Mn microsandwiches after micro-indentation. Images (e) and (f) are taken from the box 

areas in (c) and (d), respectively 
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Figure A.6 FEA predicted (a)-(b) displacement, and (c)-(d) equivalent stress of Al-9 at.% Mn 

and Al-26 at.% Mn microsandwiches after micro-indentation 
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The permission to use published articles of Appendix A is shown below. 
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The copyright permission for figure 2.13 is shown below. 
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